References
- Chen, L.Q. (2005), 'Analysis and control of transverse vibrations of axially moving strings', Appl. Mech. Rev., 58,91-115 https://doi.org/10.1115/1.1849169
- Chen, L.Q. and Yang, X.D. (2005), 'Steady state response of axially moving viscoelastic beams with pulsating speed: Comparison of two nonlinear models', Int. J. Solids Struct., 42, 37-50 https://doi.org/10.1016/j.ijsolstr.2004.07.003
- Chen, L.Q. and Zhao, W.J. (2005), 'A conserved quantity and the stability of axially moving non-linear beams', J. Sound Vib., 286, 663-668 https://doi.org/10.1016/j.jsv.2005.01.011
- Chen, L.Q., Zhabo, W.J. and Zu, J.W. (2005), 'Simulation of transverse vibrations of an axially moving string: A modified difference approach', Appl. Math. Comput., 166, 596-607 https://doi.org/10.1016/j.amc.2004.07.006
- Chen, L.Q., Zhang, N.H. and Zu, J.W. (2002), 'Bifurcation and chaos of an axially moving viscoelastic string', Mech. Res. Commun., 29,81-90 https://doi.org/10.1016/S0093-6413(02)00241-0
- Hou, Z. and Zu, J.W. (2002), 'Non-linear free oscillations of moving viscoelastic belts', Mech. Mach. Theory, 37, 925-940 https://doi.org/10.1016/S0094-114X(02)00031-9
- Kartik, V. and Wickert, J.A. (2006), 'Vibration and guiding of moving media with edge weave imperfections', J. Sound Vib., 291, 419-436 https://doi.org/10.1016/j.jsv.2005.06.021
- Kevorkian, J. and Cole, J.D. (1981), Perturbation Methods in Applied Mathematics, New York, Springer-Verlag
- Nayfeh, A.H. (1981), Introduction to Perturbation Techniques, New York, Wiley
- Nayfeh, A.H. (1993), Problems in Perturbation, New York, Wiley
- Oz, H.R. and Pakdemirli, M. (1999), 'Vibrations of an axially moving beam with time-dependent velocity', J. Sound Vib., 27, 239-257
- Oz, H.R., Pakdemirli, M. and Boyaci, H. (2001), 'Non-linear vibrations and stability of an axially moving beam with time-dependent velocity', Int. J. Nonlinear Mech., 36, 107-115 https://doi.org/10.1016/S0020-7462(99)00090-6
- Pakdemirli, M. and Ozkaya, E. (1998), 'Approximate boundary layer solution of a moving beam problem', Math. Comput. Appl., 2(3), 93-100
- Parker, R.G. (1999), 'Supercritical speed stability of the trivial equilibrium of an axially-moving string on an elastic foundation', J. Sound Vib., 221(2), 205-219 https://doi.org/10.1006/jsvi.1998.1936
- Suweken, G. and Van Horssen, W.T. (2003a), 'On the transversal vibrations of a conveyor belt with a low and time varying velocity. Part I: The string like case', J. Sound Vib., 267,117-133
- Suweken, G. and Van Horssen, W.T. (2003b), 'On the transversal vibrations of a conveyor belt with a low and time varying velocity. Part II: The beam like case', J. Sound Vib., 267, 1007-1027 https://doi.org/10.1016/S0022-460X(03)00219-0
- Suweken, G. and Van Horssen, W.T. (2003c), 'On the weakly nonlinear, transversal vibrations of a conveyor belt with a low and time-varying velocity', Nonlinear Dynam., 31, 197-223 https://doi.org/10.1023/A:1022053131286
- Thomsen, J.J. (2003), Vibrations and Stability, Springer-Verlag, Germany
- Wickert, J.A. (1992), 'Non-linear vibration of a traveling tensioned beam', Int. J. Nonlinear. Mech., 27, 503-517 https://doi.org/10.1016/0020-7462(92)90016-Z
- Wickert, J.A. and Mote, C.D. (1991), 'Traveling load response of an axially noving string', J. Sound Vib., 49(2),267-284
- Wickert, J.A. and Mote, Jr, C.D. (1998), 'On the energetics of axially moving continua', J. Acoust. Soc. Am., 85, 1365-1368 https://doi.org/10.1121/1.397418
- Zhang, N.H. and Chen, L.Q. (2005), 'Non-linear dynamical analysis of axially moving viscoelastic string', Chaos Soliton. Fract., 24, 1065-1074 https://doi.org/10.1016/j.chaos.2004.09.113
Cited by
- Nonlinear dynamics of axially moving viscoelastic beams over the buckled state vol.112-113, 2012, https://doi.org/10.1016/j.compstruc.2012.09.005
- Nonlinear vibration analysis of an axially moving drillstring system with time dependent axial load and axial velocity in inclined well vol.46, pp.5, 2011, https://doi.org/10.1016/j.mechmachtheory.2010.12.003
- Post-buckling bifurcations and stability of high-speed axially moving beams vol.68, 2013, https://doi.org/10.1016/j.ijmecsci.2013.01.001
- Rotary inertia and temperature effects on non-linear vibration, steady-state response and stability of an axially moving beam with time-dependent velocity vol.50, pp.3, 2008, https://doi.org/10.1016/j.ijmecsci.2007.10.006
- Nonlinear vibrations and stability of an axially moving Timoshenko beam with an intermediate spring support vol.67, 2013, https://doi.org/10.1016/j.mechmachtheory.2013.03.007
- Nonlinear stability and bifurcations of an axially accelerating beam with an intermediate spring-support vol.2, pp.2, 2013, https://doi.org/10.12989/csm.2013.2.2.159
- Nonlinear dynamics of an axially moving Timoshenko beam with an internal resonance vol.73, pp.1-2, 2013, https://doi.org/10.1007/s11071-013-0765-3
- Steady-state transverse response of an axially moving beam with time-dependent axial speed vol.49, 2013, https://doi.org/10.1016/j.ijnonlinmec.2012.08.003
- Stability characteristics of an axially accelerating string supported by an elastic foundation vol.44, pp.10, 2009, https://doi.org/10.1016/j.mechmachtheory.2009.05.004
- Non-linear parametric vibration and stability of axially moving visco-elastic Rayleigh beams vol.45, pp.25-26, 2008, https://doi.org/10.1016/j.ijsolstr.2008.08.002
- Nonlinear stability and bifurcations of an axially moving beam in thermal environment vol.21, pp.15, 2015, https://doi.org/10.1177/1077546313508576
- Subcritical parametric response of an axially accelerating beam vol.60, 2012, https://doi.org/10.1016/j.tws.2012.06.012
- Research on Control Theory of Belt Conveyor vol.63-64, pp.1662-7482, 2011, https://doi.org/10.4028/www.scientific.net/AMM.63-64.209
- Parametric Finite Element Analysis on Key Parts of the Conveyor vol.101-102, pp.1662-7482, 2011, https://doi.org/10.4028/www.scientific.net/AMM.101-102.755
- Internal resonance and nonlinear response of an axially moving beam: two numerical techniques vol.1, pp.3, 2007, https://doi.org/10.12989/csm.2012.1.3.235