DOI QR코드

DOI QR Code

Stability and vibration analysis of composite plates using spline finite strips with higher-order shear deformation

  • Akhras, G. (Department of Civil Engineering, Royal Military College of Canada, STN Forces) ;
  • Li, W. (Department of Civil Engineering, Royal Military College of Canada, STN Forces)
  • Received : 2006.01.24
  • Accepted : 2007.03.05
  • Published : 2007.09.10

Abstract

In the present study, a spline finite strip with higher-order shear deformation is formulated for the stability and free vibration analysis of composite plates. The analysis is conducted based on Reddy's third-order shear deformation theory, Touratier's "Sine" model, Afaq's exponential model and Cho's higher-order zigzag laminate theory. Consequently, the shear correction coefficients are not required in the analysis, and an improved accuracy for thick laminates is achieved. The numerical results, based on different shear deformation theories, are presented in comparison with the three-dimensional elasticity solutions. The effects of length-to-thickness ratio, fibre orientation, and boundary conditions on the critical buckling loads and natural frequencies are investigated through numerical examples.

Keywords

References

  1. Afaq, K., Karama, M. and Mistou S. (2003), 'A new refined model for laminated structures', Comptes Rendus des JNC13, Strasbourg, France, 12-14 Mars, 283-292
  2. Akhras, G. and Li, W. (2005), 'Static and free vibration analysis of composite plates using spline finite strips with higher-order shear deformation', Composites: Part B, 36, 496-503 https://doi.org/10.1016/j.compositesb.2005.03.001
  3. Akhras, G. and Li, W. (2007), 'Spline finite strip analysis of composite plates based on higher-order zigzag composite plate theory', Compos. Struct., 78(1), 112-118 https://doi.org/10.1016/j.compstruct.2005.08.016
  4. Akhras, G., Cheung, M.S. and Li, W. (1995), 'Vibration and stability analysis of thick anisotropic composite plates by finite strip method', Struct. Eng. Mech., 3(1), 49-60 https://doi.org/10.12989/sem.1995.3.1.049
  5. Akhras, G., Cheung, M.S. and Li, W. (1994), 'Finite strip analysis of anisotropic laminated composite plates using higher-order shear deformation theory', Comput. Struct., 52(3), 471-477 https://doi.org/10.1016/0045-7949(94)90232-1
  6. Chen, C.C., Liew, K.M., Lim, C.W. and Kitipornchai, K. (1997), 'Vibration analysis of symmetrically laminated thick rectangular plates using the higher-order theory and p-Ritz method', J. Acoustical Soc. Am., 102(3), 1600-1611 https://doi.org/10.1121/1.420072
  7. Cheung, M.S., Li, W. and Chidiac, S.E. (1996), Finite Strip Analysis of Bridges, E & FN SPON, London
  8. Cheung, Y.K. and Kong, J. (1993), 'Linear elastic stability analysis of shear deformable plates using a modified spline finite strip method', Comput. Struct., 47(2), 189-192 https://doi.org/10.1016/0045-7949(93)90366-L
  9. Cho, M. and Parmerter, R.R. (1993), 'Efficient higher order composite plate theory for general lamination configurations', AIAA J., 31(7), 1299-1306 https://doi.org/10.2514/3.11767
  10. Dawe, D.J. (2002), 'Use of the finite strip method in predicting the behaviors of composite laminated structures', Compos. Struct., 57(1), 11-36 https://doi.org/10.1016/S0263-8223(02)00059-4
  11. Dawe, D.J. and Roufaeil, O.L. (1982), 'Buckling of rectangular Mindlin plates', Comput. Struct., 15(4), 461-471 https://doi.org/10.1016/0045-7949(82)90081-5
  12. Kong, J. and Cheung, Y.K. (1995), 'A generalized spline finite strip for the analysis of plates', Thin Wall. Struct., 22(3), 181-202 https://doi.org/10.1016/0263-8231(94)00035-X
  13. Kong, J. and Cheung, Y.K. (1993), 'Application of the spline finite strip to the analysis of shear deformable plates', Comput. Struct., 46(6), 985-988 https://doi.org/10.1016/0045-7949(93)90083-P
  14. Noor, A.K. (1975), 'Stability of multilayered composite plates', Fibre Sci. Technol., 8, 81-89 https://doi.org/10.1016/0015-0568(75)90005-6
  15. Noor, A.K. (1973), 'Free vibrations of multilayered composite plates', AIAA J., 11(7), 1038-1039 https://doi.org/10.2514/3.6868
  16. Phan, N.D. and Reddy, J.N. (1985), 'Analysis of laminated composite plates using a higher-order deformation theory', Int. J. Numer. Meth. Eng., 21, 2201-2219 https://doi.org/10.1002/nme.1620211207
  17. Putcha, N.S. and Reddy, J.N. (1986), 'A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates', Comput. Struct., 22(4), 529-538 https://doi.org/10.1016/0045-7949(86)90002-7
  18. Ramos Loja, M.A., Mota Soares, C.M. and Mota Soares, C.A. (2001), 'Higher-order B-spline finite strip model for laminated adaptive structures', Compos. Struct., 52, 419-427 https://doi.org/10.1016/S0263-8223(01)00032-0
  19. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates, Theory and Analysis, Second Edition, CRC Press, New York
  20. Reddy, J.N. (1984), 'A simple higher-order theory for laminated composite plates', J. Appl. Mech., 51, 745-752 https://doi.org/10.1115/1.3167719
  21. Reddy, J.N. and Phan N.D. (1985), 'Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory', J. Sound Vib., 98(2), 157-170 https://doi.org/10.1016/0022-460X(85)90383-9
  22. Srinivas, S., Joga Rao, C.V. and Rao, A.K. (1970), 'Some results from an exact analysis of thick laminates in vibration and buckling', J. Appl. Mech., 37, 868-870 https://doi.org/10.1115/1.3408626
  23. Shu, X. and Sun, L. (1994), 'An improved simple higher-order theory for laminated composite plates', Comput. Struct., 50(2),231-236 https://doi.org/10.1016/0045-7949(94)90298-4
  24. Touratier, M. (1991), 'An efficient standard plate theory', Int. J. Eng. Sci., 29(8), 901-916 https://doi.org/10.1016/0020-7225(91)90165-Y

Cited by

  1. Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions vol.35, pp.2, 2007, https://doi.org/10.12989/sem.2010.35.2.217
  2. Creep analysis of CFT columns subjected to eccentric compression loads vol.11, pp.4, 2007, https://doi.org/10.12989/cac.2013.11.4.291
  3. Experimental study on creep behavior of fly ash concrete filled steel tube circular arches vol.27, pp.2, 2007, https://doi.org/10.12989/scs.2018.27.2.185
  4. A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions vol.28, pp.6, 2018, https://doi.org/10.12989/scs.2018.28.6.655
  5. Shear deformable super-convergent finite element for steel beams strengthened with glass-fiber reinforced polymer (GFRP) plate vol.46, pp.4, 2007, https://doi.org/10.1139/cjce-2018-0259