References
- Abdalla, J.A. and Ibrahim, A.M. (2006), 'Development of a discrete Reissner-Mindlin element on winkler foundation', Finite Elem. Anal. Des., 42(8-9), 740-748 https://doi.org/10.1016/j.finel.2005.11.004
- Andrade, L.G, Awruch, A.M. and Morsch, L.B. (2006), 'Geometrically nonlinear analysis of laminate composite plates and shells using the eight-node hexahedral element with one-point integration', (in press) Compos. Struct
- Bathe, K.J. (1996), Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, New Jersey
- Bathe, K.J. and Bolourchi, S. (1980), 'A geometric and material nonlinear plate and shell element', Comput. Struct., 11(1-2), 23-48 https://doi.org/10.1016/0045-7949(80)90144-3
- Bhaumik, A.K. and Hanley, J.T. (1967), 'Elasto-plastic plate analysis by finite differences', J. Struct. Div., Proc. ASCE, 279-94
- Chai, C.Y. (1980), Nonlinear Analysis of Plates. McGraw-Hili, New York
- Clough, R.W. and Fellipa, C.A. (1969), 'A refined quadrilateral element for analysis of plate bending', Proc. of the Second Con! on Matrix Methods in Structural Mechanics, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, 399-440
- Crisfield, M.A. (1973), Large Deflection Elasto-plastic Buckling Analysis of Plates using Finite Element. TRRL report, LR593
- Darilmaz, K (2005), 'An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates', Struct. Eng. Mech., 19(2), 199-215 https://doi.org/10.12989/sem.2005.19.2.199
- Dvorkin, E.N. and Bathe, K.J. (1984), 'A continuum mechanics based four-node shell element for general nonlinear analysis', J. Eng. Comp., 1, 77-88 https://doi.org/10.1108/eb023562
- Filho, L.A.D. and Awruch, A.M.A. (2004), 'Geometrically nonlinear static and dynamic analysis of shells and plates using the eight-node hexahedral element with one-point quadrature', Finite Elem. Anal. Des., 40(11), 1297-1315 https://doi.org/10.1016/j.finel.2003.08.012
- Hinton, E. and Huang, H.C. (1986), 'A family of quadrilateral Mindlin plate elements with substitute shear strain fields', Comput. Struct., 23, 407-431
- Hu, Y.K. and Nagy, L.I. (1997), 'A one-point quadrature eight-node brick element with hourglass control', Comput. Struct., 65, 893-902 https://doi.org/10.1016/S0045-7949(96)00088-0
- Hughes, T.J.R. and Lui, W.K. (1981), 'Nonlinear finite element analysis of shells: Part 1. Three-dimensional shells', Comput. Meth. Appl. Mech. Eng., 26, 331-362 https://doi.org/10.1016/0045-7825(81)90121-3
- Ibrahim, A.K. (1998), Nonlinear Finite Element Analysis of Plates. M.Sc. Thesis, University of Khartoum, Khartoum, Sudan
- Kere, P. and Lyly, M. (2005), 'Reissner-Mindlin- Von Karman type plate model for nonlinear analysis of laminated composite structures', Compos. Struct., 71, 289-292 https://doi.org/10.1016/j.compstruct.2005.09.007
- Kim, C.H., Sze, K.Y. and Kim, Y.H. (2003), 'Curved quadratic triangular degenerated- and solid-shell elements for geometric non-linear analysis', Int. J. Numer. Meth. Eng., 57(14), 2077-2097 https://doi.org/10.1002/nme.756
- Leung, A.Y. and Zhu, B. (2004), 'Geometric nonlinear vibration of clamped Mindlin plates by analytically integrated trapezoidal p element', Thin Wall. Struct., 42, 931-945 https://doi.org/10.1016/j.tws.2004.03.010
- Levy, S. (1942), Bending of Rectangular Plates with Large Deflection. NASA Technical Note 846
- Levy, R. and Gal, E. (2001), 'Geometrically nonlinear three-noded flat triangular shell elements', Comput. Struct., 79(26-28), 2349-2355 https://doi.org/10.1016/S0045-7949(01)00066-9
- Liu, W.K., Guo, Y., Tang, S. and Belytschko, T. (1998), 'A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis', Comput. Meth. Appl. Mech. Eng., 154, 69-132 https://doi.org/10.1016/S0045-7825(97)00106-0
- Mackerle, J. (1999), 'Geometric-nonlinear analysis by finite element and boundary element methods - A bibliography (1997-1998)', Finite Elem. Anal. Des., 32, 51-62 https://doi.org/10.1016/S0168-874X(98)00069-9
- Mindlin, R.D. (1951), 'Influence of rotary inertia on flexural motion of isotropic elastic plates', J Appl. Mech, 18,31-38
- Morely, L.S. (1971), 'On constant moment plate bending element', J. Strain Anal., 6, 20-24 https://doi.org/10.1243/03093247V061020
- Oden, J.T. (1967), 'Numerical formulation of nonlinear elasticity problems', J. Struct. Div., ASCE, 93, 235-255
- Onate, E., Zienkiewicz, O.C., Suarez, B. and Taylor, R.L. (1992), 'A general methodology for deriving shear constrained Reissner-Mindlin plate elements', Int. J. Numer. Meth. Eng., 33, 345-367 https://doi.org/10.1002/nme.1620330208
- Papadopoulos, P. and Taylor, R.L. (1990), 'A triangular element based on Reissner-Mindlin plate theory', Int. J. Numer. Meth. Eng., 30(5), 1029-1049 https://doi.org/10.1002/nme.1620300506
- Pawsey, S.F. and Clough, R.W. (1971), 'Improved numerical integration of thick slab finite element', Int. J. Num. Meth. Eng., 3, 75-86
- Pica, A., Wood, R.D. and Hinton, E. (1980), 'Finite element analysis of geometrically nonlinear plate behavior using a Mindlin formulation', Comput. Struct., 11, 203-215 https://doi.org/10.1016/0045-7949(80)90160-1
- Reddy, J.N. (1990), 'A general non-linear third-order theory of large deflections of plates with moderate thickness', Int. J. Non-linear Mech., 25, 677-686 https://doi.org/10.1016/0020-7462(90)90006-U
- Reissner, E. (1945), 'The effect of transverse shear deformations on the bending of elastic plates', J. Appl. Mech., 12, 69-77
- Rushton, K.R. (1972), 'Large deflection of plates with unsupported edges', J. Strain Anal., 7(1),44-53 https://doi.org/10.1243/03093247V071044
- Sheikh, A.H. and Mukhopadhyay, M. (2000), 'Geometric nonlinear analysis of stiffened plates by the spline finite strip method', Comput. Struct., 76, 765-785 https://doi.org/10.1016/S0045-7949(99)00191-1
- Shen, H.S. (2000), 'Nonlinear bending of simply supported rectangular Reissner-Mindlin plates under transverse and in-plane loads and resting on elastic foundations', Eng. Struct., 22, 847-856 https://doi.org/10.1016/S0141-0296(99)00044-9
- Singh, G., Rao, V. and Iyengar, N.G.R. (1994), 'Geometrically nonlinear flexural response characteristics of shear deformable unsymmetrically laminated plates', Comput. Struct., 53(1), 69-81 https://doi.org/10.1016/0045-7949(94)90131-7
- Sundara, K.T., Iyengar, R. and Naqvi, N.M. (1966), 'Large deflections of rectangular plates', Int. J. Non-linear Mech., 1, 109-122 https://doi.org/10.1016/0020-7462(66)90024-2
- Taylor, R.L. and Auricchio, F. (1993), 'Linked Interpolation for Reissner-Mindlin plate elements part II-a simple triangle', Int. J Numer. Meth. Eng., 36, 3057-3066 https://doi.org/10.1002/nme.1620361803
- Thompson, J.M.T. and Walker, A.C. (1968), 'The nonlinear perturbation analysis of discrete structural systems', Int. J. Solids Struct., 4, 757-768 https://doi.org/10.1016/0020-7683(68)90054-1
- Timoshenko, S.P. and Woinowsky-Krieger, S. (1972), Theory of Plates and Shells. 2nd. edn., McGraw Hill Book Company
- Turner, M.J., Dill, E.E., Martin, H.C. and Melsoh, R.J. (1960), 'Large deflection of structures subjected to heating and external loads', J. Aerospace Sc., 27, 97-107 https://doi.org/10.2514/8.8412
- Turvey, G.J. (1978), 'Large deflection of tapered annular plates by dynamic relaxation', J. Eng. Mech. Div., 104(2), 351-366
- Zhang, Y.X. and Cheung, Y.K. (2003), 'Geometric nonlinear analysis of thin plates by a refined nonlinear nonconforming triangular plate element', Thin Wall. Struct., 4, 403-418
- Zhang, Y.X. and Kim, K.S. (2006), 'Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate element', Compos. Struct., 72, 301-310 https://doi.org/10.1016/j.compstruct.2005.01.001
- Zhu, J. and Chen, W. (1997), 'Geometric nonlinear analysis by using refined triangular thin plate element and free form membrane locking', Comput. Struct., 63(5), 999-1005 https://doi.org/10.1016/S0045-7949(96)00392-6
- Zienkiewicz, O.C. and Cheung, Y.K. (1964), 'The finite element method for analysis of elastic isotropic & orthotropic slabs', Proc. Inst. Civ. Eng., 28, 471-488
- Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method Vol. 1, The Basis and Vol. 2, Solid Mechanics, 5th. Edition, Butterworth-Heinemann, Oxford
- Zienkiewicz, O.C., Taylor, R.L., Papadopouls, P. and Onate, E. (1990), 'Plate bending elements with discrete constraints; new triangular elements', Comput. Struct., 35(4), 505-522 https://doi.org/10.1016/0045-7949(90)90072-A
- Zienkiewicz, O.C., Too, J.M. and Taylor, R.L. (1971), 'Reduced integration technique in general analysis of plates and shells', Int. J. Numer. Meth. Eng., 3, 275-290 https://doi.org/10.1002/nme.1620030211
Cited by
- Problems with a popular thick plate element and the development of an improved thick plate element vol.29, pp.3, 2007, https://doi.org/10.12989/sem.2008.29.3.327