DOI QR코드

DOI QR Code

A geometrically nonlinear thick plate bending element based on mixed formulation and discrete collocation constraints

  • Abdalla, J.A. (Department of Civil Engineering, American University of Sharjah) ;
  • Ibrahim, A.K. (Department of Civil Engineering, University of Sudan for Science and Technology)
  • Received : 2006.10.25
  • Accepted : 2007.03.08
  • Published : 2007.08.20

Abstract

In recent years there are many plate bending elements that emerged for solving both thin and thick plates. The main features of these elements are that they are based on mix formulation interpolation with discrete collocation constraints. These elements passed the patch test for mix formulation and performed well for linear analysis of thin and thick plates. In this paper a member of this family of elements, namely, the Discrete Reissner-Mindlin (DRM) is further extended and developed to analyze both thin and thick plates with geometric nonlinearity. The Von K$\acute{a}$rm$\acute{a}$n's large displacement plate theory based on Lagrangian coordinate system is used. The Hu-Washizu variational principle is employed to formulate the stiffness matrix of the geometrically Nonlinear Discrete Reissner-Mindlin (NDRM). An iterative-incremental procedure is implemented to solve the nonlinear equations. The element is then tested for plates with simply supported and clamped edges under uniformly distributed transverse loads. The results obtained using the geometrically NDRM element is then compared with the results of available analytical solutions. It has been observed that the NDRM results agreed well with the analytical solutions results. Therefore, it is concluded that the NDRM element is both reliable and efficient in analyzing thin and thick plates with geometric non-linearity.

Keywords

References

  1. Abdalla, J.A. and Ibrahim, A.M. (2006), 'Development of a discrete Reissner-Mindlin element on winkler foundation', Finite Elem. Anal. Des., 42(8-9), 740-748 https://doi.org/10.1016/j.finel.2005.11.004
  2. Andrade, L.G, Awruch, A.M. and Morsch, L.B. (2006), 'Geometrically nonlinear analysis of laminate composite plates and shells using the eight-node hexahedral element with one-point integration', (in press) Compos. Struct
  3. Bathe, K.J. (1996), Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, New Jersey
  4. Bathe, K.J. and Bolourchi, S. (1980), 'A geometric and material nonlinear plate and shell element', Comput. Struct., 11(1-2), 23-48 https://doi.org/10.1016/0045-7949(80)90144-3
  5. Bhaumik, A.K. and Hanley, J.T. (1967), 'Elasto-plastic plate analysis by finite differences', J. Struct. Div., Proc. ASCE, 279-94
  6. Chai, C.Y. (1980), Nonlinear Analysis of Plates. McGraw-Hili, New York
  7. Clough, R.W. and Fellipa, C.A. (1969), 'A refined quadrilateral element for analysis of plate bending', Proc. of the Second Con! on Matrix Methods in Structural Mechanics, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, 399-440
  8. Crisfield, M.A. (1973), Large Deflection Elasto-plastic Buckling Analysis of Plates using Finite Element. TRRL report, LR593
  9. Darilmaz, K (2005), 'An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates', Struct. Eng. Mech., 19(2), 199-215 https://doi.org/10.12989/sem.2005.19.2.199
  10. Dvorkin, E.N. and Bathe, K.J. (1984), 'A continuum mechanics based four-node shell element for general nonlinear analysis', J. Eng. Comp., 1, 77-88 https://doi.org/10.1108/eb023562
  11. Filho, L.A.D. and Awruch, A.M.A. (2004), 'Geometrically nonlinear static and dynamic analysis of shells and plates using the eight-node hexahedral element with one-point quadrature', Finite Elem. Anal. Des., 40(11), 1297-1315 https://doi.org/10.1016/j.finel.2003.08.012
  12. Hinton, E. and Huang, H.C. (1986), 'A family of quadrilateral Mindlin plate elements with substitute shear strain fields', Comput. Struct., 23, 407-431
  13. Hu, Y.K. and Nagy, L.I. (1997), 'A one-point quadrature eight-node brick element with hourglass control', Comput. Struct., 65, 893-902 https://doi.org/10.1016/S0045-7949(96)00088-0
  14. Hughes, T.J.R. and Lui, W.K. (1981), 'Nonlinear finite element analysis of shells: Part 1. Three-dimensional shells', Comput. Meth. Appl. Mech. Eng., 26, 331-362 https://doi.org/10.1016/0045-7825(81)90121-3
  15. Ibrahim, A.K. (1998), Nonlinear Finite Element Analysis of Plates. M.Sc. Thesis, University of Khartoum, Khartoum, Sudan
  16. Kere, P. and Lyly, M. (2005), 'Reissner-Mindlin- Von Karman type plate model for nonlinear analysis of laminated composite structures', Compos. Struct., 71, 289-292 https://doi.org/10.1016/j.compstruct.2005.09.007
  17. Kim, C.H., Sze, K.Y. and Kim, Y.H. (2003), 'Curved quadratic triangular degenerated- and solid-shell elements for geometric non-linear analysis', Int. J. Numer. Meth. Eng., 57(14), 2077-2097 https://doi.org/10.1002/nme.756
  18. Leung, A.Y. and Zhu, B. (2004), 'Geometric nonlinear vibration of clamped Mindlin plates by analytically integrated trapezoidal p element', Thin Wall. Struct., 42, 931-945 https://doi.org/10.1016/j.tws.2004.03.010
  19. Levy, S. (1942), Bending of Rectangular Plates with Large Deflection. NASA Technical Note 846
  20. Levy, R. and Gal, E. (2001), 'Geometrically nonlinear three-noded flat triangular shell elements', Comput. Struct., 79(26-28), 2349-2355 https://doi.org/10.1016/S0045-7949(01)00066-9
  21. Liu, W.K., Guo, Y., Tang, S. and Belytschko, T. (1998), 'A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis', Comput. Meth. Appl. Mech. Eng., 154, 69-132 https://doi.org/10.1016/S0045-7825(97)00106-0
  22. Mackerle, J. (1999), 'Geometric-nonlinear analysis by finite element and boundary element methods - A bibliography (1997-1998)', Finite Elem. Anal. Des., 32, 51-62 https://doi.org/10.1016/S0168-874X(98)00069-9
  23. Mindlin, R.D. (1951), 'Influence of rotary inertia on flexural motion of isotropic elastic plates', J Appl. Mech, 18,31-38
  24. Morely, L.S. (1971), 'On constant moment plate bending element', J. Strain Anal., 6, 20-24 https://doi.org/10.1243/03093247V061020
  25. Oden, J.T. (1967), 'Numerical formulation of nonlinear elasticity problems', J. Struct. Div., ASCE, 93, 235-255
  26. Onate, E., Zienkiewicz, O.C., Suarez, B. and Taylor, R.L. (1992), 'A general methodology for deriving shear constrained Reissner-Mindlin plate elements', Int. J. Numer. Meth. Eng., 33, 345-367 https://doi.org/10.1002/nme.1620330208
  27. Papadopoulos, P. and Taylor, R.L. (1990), 'A triangular element based on Reissner-Mindlin plate theory', Int. J. Numer. Meth. Eng., 30(5), 1029-1049 https://doi.org/10.1002/nme.1620300506
  28. Pawsey, S.F. and Clough, R.W. (1971), 'Improved numerical integration of thick slab finite element', Int. J. Num. Meth. Eng., 3, 75-86
  29. Pica, A., Wood, R.D. and Hinton, E. (1980), 'Finite element analysis of geometrically nonlinear plate behavior using a Mindlin formulation', Comput. Struct., 11, 203-215 https://doi.org/10.1016/0045-7949(80)90160-1
  30. Reddy, J.N. (1990), 'A general non-linear third-order theory of large deflections of plates with moderate thickness', Int. J. Non-linear Mech., 25, 677-686 https://doi.org/10.1016/0020-7462(90)90006-U
  31. Reissner, E. (1945), 'The effect of transverse shear deformations on the bending of elastic plates', J. Appl. Mech., 12, 69-77
  32. Rushton, K.R. (1972), 'Large deflection of plates with unsupported edges', J. Strain Anal., 7(1),44-53 https://doi.org/10.1243/03093247V071044
  33. Sheikh, A.H. and Mukhopadhyay, M. (2000), 'Geometric nonlinear analysis of stiffened plates by the spline finite strip method', Comput. Struct., 76, 765-785 https://doi.org/10.1016/S0045-7949(99)00191-1
  34. Shen, H.S. (2000), 'Nonlinear bending of simply supported rectangular Reissner-Mindlin plates under transverse and in-plane loads and resting on elastic foundations', Eng. Struct., 22, 847-856 https://doi.org/10.1016/S0141-0296(99)00044-9
  35. Singh, G., Rao, V. and Iyengar, N.G.R. (1994), 'Geometrically nonlinear flexural response characteristics of shear deformable unsymmetrically laminated plates', Comput. Struct., 53(1), 69-81 https://doi.org/10.1016/0045-7949(94)90131-7
  36. Sundara, K.T., Iyengar, R. and Naqvi, N.M. (1966), 'Large deflections of rectangular plates', Int. J. Non-linear Mech., 1, 109-122 https://doi.org/10.1016/0020-7462(66)90024-2
  37. Taylor, R.L. and Auricchio, F. (1993), 'Linked Interpolation for Reissner-Mindlin plate elements part II-a simple triangle', Int. J Numer. Meth. Eng., 36, 3057-3066 https://doi.org/10.1002/nme.1620361803
  38. Thompson, J.M.T. and Walker, A.C. (1968), 'The nonlinear perturbation analysis of discrete structural systems', Int. J. Solids Struct., 4, 757-768 https://doi.org/10.1016/0020-7683(68)90054-1
  39. Timoshenko, S.P. and Woinowsky-Krieger, S. (1972), Theory of Plates and Shells. 2nd. edn., McGraw Hill Book Company
  40. Turner, M.J., Dill, E.E., Martin, H.C. and Melsoh, R.J. (1960), 'Large deflection of structures subjected to heating and external loads', J. Aerospace Sc., 27, 97-107 https://doi.org/10.2514/8.8412
  41. Turvey, G.J. (1978), 'Large deflection of tapered annular plates by dynamic relaxation', J. Eng. Mech. Div., 104(2), 351-366
  42. Zhang, Y.X. and Cheung, Y.K. (2003), 'Geometric nonlinear analysis of thin plates by a refined nonlinear nonconforming triangular plate element', Thin Wall. Struct., 4, 403-418
  43. Zhang, Y.X. and Kim, K.S. (2006), 'Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate element', Compos. Struct., 72, 301-310 https://doi.org/10.1016/j.compstruct.2005.01.001
  44. Zhu, J. and Chen, W. (1997), 'Geometric nonlinear analysis by using refined triangular thin plate element and free form membrane locking', Comput. Struct., 63(5), 999-1005 https://doi.org/10.1016/S0045-7949(96)00392-6
  45. Zienkiewicz, O.C. and Cheung, Y.K. (1964), 'The finite element method for analysis of elastic isotropic & orthotropic slabs', Proc. Inst. Civ. Eng., 28, 471-488
  46. Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method Vol. 1, The Basis and Vol. 2, Solid Mechanics, 5th. Edition, Butterworth-Heinemann, Oxford
  47. Zienkiewicz, O.C., Taylor, R.L., Papadopouls, P. and Onate, E. (1990), 'Plate bending elements with discrete constraints; new triangular elements', Comput. Struct., 35(4), 505-522 https://doi.org/10.1016/0045-7949(90)90072-A
  48. Zienkiewicz, O.C., Too, J.M. and Taylor, R.L. (1971), 'Reduced integration technique in general analysis of plates and shells', Int. J. Numer. Meth. Eng., 3, 275-290 https://doi.org/10.1002/nme.1620030211

Cited by

  1. Problems with a popular thick plate element and the development of an improved thick plate element vol.29, pp.3, 2007, https://doi.org/10.12989/sem.2008.29.3.327