References
- Ainsworth, R.A., Bannister, A.C. and Zerbst, U. (2002), 'An overview of the european flaw assessment procedure sintap and its validation', Int. J. Pressure Vessel & Piping, 77, 869-876
- Ainsworth, R.A., Sattari-Far, I., Sherry, A.H., Hooten, D.G. and Hadley, I. (2000), 'Methods of including constraint effects within SINTAP procedures', Eng. Fract. Mech., 67, 563-571 https://doi.org/10.1016/S0013-7944(00)00074-6
- Aliabadi, M.H. and Rooke, D.P. (1986), Numerical Fracture Mechanics. Kluwer Academic Publishers, Dordrecht
- Betegon, C. and Hancock, J.W. (1991), 'Two-parameter characterization of elastic-plastic crack tip field', J. Appl. Mech., ASME, 58, 104-110 https://doi.org/10.1115/1.2897135
- Bilby, B.A., Cardew, G.E., Goldthorpe, M.R. and Howard, I.C. (1986), 'A finite element investigation of the effect of specimen geometry on the fields of stress and strains at the tips of stationary cracks', In: Size Effects in Fracture, Mechanical Engineering Publications, London, 37-46
- Broberg, K.B. (2004), 'A note on T-stress determination using dislocation arrays', Int. J. Fracture, 131, 1-14 https://doi.org/10.1007/s10704-004-3637-5
- Du, Z.Z. and Hancock, J.W. (1991), 'The effect of non-singular stresses on crack tip constraint', J. Mech. Physics Solids, 39, 555-567 https://doi.org/10.1016/0022-5096(91)90041-L
- Kfouri, A.P. (1986), 'Some evaluations of the elastic T-stress using Eshelby's method', Int. J. Fract., 20, 301-315
- Larsson, S.G and Carlsson, A.J. (1973), 'Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack-tips in elastic-plastic materials', J. Mech. Physics Solids, 21, 263-277 https://doi.org/10.1016/0022-5096(73)90024-0
- Lewis, T. (2005), 'T-stress solutions for cracks at notches and in cylinders', M.A.Sc. Thesis, Carleton University, Ottawa, ON, Canada
- Li, J., Tan, C.L. and Wang, X. (2004), 'T-stress solutions for a radial edge crack in a thick-walled cylinder by the boundary element method', In: Leitao, V.M.A. and Aliabadi, M.H. (eds.) Advances in Boundary Element Techniques V, Proceedings of BETEQ 2004 Conference, Lisbon, EC Ltd., U.K., 141-146
- Murakami, Y. (2003), Stress Intensity Factors Handbook. Pergamon Press, Elmsford, New York
- Rice, J.R. (1974), 'Limitations to small scale yielding approximation for crack tip plasticity', J. Mech. Physics Solids, 22, 17-26 https://doi.org/10.1016/0022-5096(74)90010-6
- Rooke, D.P. and Cartwright, D.J. (1976), Compendium of Stress Intensity Factors. Hillington Press, Uxbridge, Middx (UK)
- Roychowdhury, S. and Dodds, R.H. (2004), 'Effects of T-stress on fatigue crack closure in 3-D small scale yielding', Int. J. Solids Struct., 41, 2581-2606 https://doi.org/10.1016/j.ijsolstr.2003.11.004
- Shah, P.D., Tan, C.L. and Wang, X. (2005), 'T-stress solutions for two-dimensional crack problems in anisotropic elasticity using the boundary element method', Fatigue Fract. Engng. Mater. Struct., 29, 343-356
- Sladek, J., Sladek, V. and Fedelinski, P. (1997), 'Contour integrals for mixed-mode crack analysis: effect of nonsingular terms', Theo. Appl. Fract. Mech., 27, 115-127 https://doi.org/10.1016/S0167-8442(97)00013-X
- Tong, J. (2002), 'T-stress and its implications for crack growth', Eng. Fract. Mech., 69, 1325-1337 https://doi.org/10.1016/S0013-7944(02)00002-4
- Wang, X., Lewis, T. and Bell, R. (2006), 'Estimations of the T-stress for small cracks at notches', Eng. Fract. Mech., 73, 366-375 https://doi.org/10.1016/j.engfracmech.2005.06.009
- Williams, M.L. (1957), 'On the stress distribution at the base of a stationary crack', J. Appl. Mech., ASME, 24, 109-114
- Yu, J., Tan, C.L. and Wang, X. (2006), 'T-stress solutions for cracks emanating from a circular hole in a finite plate', Int. J. Fract., 140, pp. 293-298 https://doi.org/10.1007/s10704-006-0110-7
Cited by
- KI–T estimations for embedded flaws in pipes – Part I: Axially oriented cracks vol.87, pp.4, 2010, https://doi.org/10.1016/j.ijpvp.2010.03.003