DOI QR코드

DOI QR Code

Elastic modulus in large concrete structures by a sequential hypothesis testing procedure applied to impulse method data

  • Antonaci, Paola (Dipartimento di Ingegneria Strutturale e Geotecnica) ;
  • Bocca, Pietro G. (Dipartimento di Ingegneria Strutturale e Geotecnica) ;
  • Sellone, Fabrizio (Dipartimento di Elettronica, Politecnico di Torino)
  • Received : 2006.03.09
  • Accepted : 2007.02.12
  • Published : 2007.07.30

Abstract

An experimental method denoted as Impulse Method is proposed as a cost-effective non-destructive technique for the on-site evaluation of concrete elastic modulus in existing structures: on the basis of Hertz's quasi-static theory of elastic impact and with the aid of a simple portable testing equipment, it makes it possible to collect series of local measurements of the elastic modulus in an easy way and in a very short time. A Hypothesis Testing procedure is developed in order to provide a statistical tool for processing the data collected by means of the Impulse Method and assessing the possible occurrence of significant variations in the elastic modulus without exceeding some prescribed error probabilities. It is based on a particular formulation of the renowned sequential probability ratio test and reveals to be optimal with respect to the error probabilities and the required number of observations, thus further improving the time-effectiveness of the Impulse Method. The results of an experimental investigation on different types of plain concrete prove the validity of the Impulse Method in estimating the unknown value of the elastic modulus and attest the effectiveness of the proposed Hypothesis Testing procedure in identifying significant variations in the elastic modulus.

Keywords

References

  1. Alliche, A. (2004), 'Damage model for fatigue loading of concrete', Int. J. Fatigue, 26, 915-921 https://doi.org/10.1016/j.ijfatigue.2004.02.006
  2. Alves, M., Yu, J. and Jones, N. (2000), 'On the elastic modulus degradation in continuum damage mechanics', Comput. Struct., 76, 703-712 https://doi.org/10.1016/S0045-7949(99)00187-X
  3. Antonaci, P. and Bocca, P. (2004), 'On-site evaluation of concrete deformability characteristics: Two non-destructive methods compared', Scientific Israel-Technological Advantages, 6(3-4), 87-95
  4. Antonaci, P. and Bocca, P. (2005), 'The pull-out method for the on-site estimation of the elastic modulus of concrete', J. Strain Anal. Eng. Design, 40(6), 505-511 https://doi.org/10.1243/030932405X30795
  5. Baluch, M.H., Al-Gadhib, A.H., Khan, A.R. and Shaalan, A. (2003), 'CDM model for residual strength of concrete under cyclic compression', Cement Concrete Comp., 25, 503-512 https://doi.org/10.1016/S0958-9465(02)00090-2
  6. Bartlett, F.M. (1997), 'Precision of in-place concrete strengths predicted using core strength correction factors obtained by weighted regression analysis', Struct. Saf., 19(4), 397-410 https://doi.org/10.1016/S0167-4730(97)00020-9
  7. Bazant, Z.P. and Novak, D. (2003), 'Stochastic models for deformation and failure in quasibrittle structures: recent advances and new directions', in Computational Modelling of Concrete Structures, N. Bicanic, R. De Borst. H. Mang and G. Meschke, Ed., 583-598
  8. Bocca, P. and Indelicato, F. (1988), 'Size effects and statistical problems of microcores in the re-evaluation of existing structures', in Re-Evaluation of Concrete Structures. Reliability and Load Carrying Capacity, S. Rostam and M.W. Braestrup, Ed., 463-472
  9. Bocca, P., Lucchese, A., Munari, G. and Scavia, C. (1991), 'Il metodo ad impatti', in Danneggiamento e Diagnosi di Materiali e Struttture, P. Bocca and A. Carpinteri, Eds., 51-74, Pitagora
  10. Collepardi, M. (1980), Scienza e Tecnologia del Calcestruzzo, Hoepli
  11. Demir, F. (2005), 'A new way of prediction elastic modulus of normal and high strength concrete-fuzzy logic', Cement Concrete Res., 35, 1531-1538 https://doi.org/10.1016/j.cemconres.2005.01.001
  12. Emberson, N.K. and Mays, G.C. (1990), 'Signicance of property mismatch in the patch repair of structural concrete. Part 1: Properties of repair systems', Mag. Concrete Res., 42(152), 147-160 https://doi.org/10.1680/macr.1990.42.152.147
  13. Emberson, N.K. and Mays, G.C. (1990), 'Signicance of property mismatch in the patch repair of structural concrete. Part 2: Axially loaded reinforced concrete members', Mag. Concrete Res., 42(152), 147-160 https://doi.org/10.1680/macr.1990.42.152.147
  14. Gasparetto, A. and Giovagnoni, M. (2000), 'Measurement of the isotropic dynamic Young's modulus in a seismically excited cantilever beam using a laser sensor', J. Sound Vib., 231(5), 1339-1353
  15. Hassan, M., Burdet, O. and Favre, R. (1995), 'Ultrasonic measurements and static load tests in bridge evaluation', NDT&E Int., 28(6), 331-337 https://doi.org/10.1016/0963-8695(95)00043-7
  16. Johnson, K.L. (1987), Contact Mechanics, Cambridge University Press
  17. Karadelis, J.N. (2000), 'A numerical model for the computation of concrete pavement moduli: A non-destructive testing and assessment method', NDT&E Int., 33, 77-84 https://doi.org/10.1016/S0963-8695(99)00034-1
  18. Lehmann, E.L. (1994), Testing Statistical Hypotheses, Chapman and Hall
  19. Lemaitre, J. (1996), A Course on Damage Mechanics, Springer-Verlag
  20. Morgan, D.R. (1996), 'Compatibility of concrete repair materials and systems', Constr. Build. Mater., 10(1), 57-67 https://doi.org/10.1016/0950-0618(95)00060-7
  21. Park, Y.J. (1990), 'Fatigue of concrete under random loadings', J. Struct. Eng., ASCE, 116(11),3228-3235 https://doi.org/10.1061/(ASCE)0733-9445(1990)116:11(3228)
  22. Persson, B. (2004), 'Justification of federation international de Beton, fib, 2000 Model for elastic modulus of normal and high-performance concrete, HPC', Cement Concrete Res., 34, 651-655 https://doi.org/10.1016/j.cemconres.2003.10.015
  23. prEN 1992-1-1 (2003), 'Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings'
  24. Qixian, L. and Bungey, J.H. (1996), 'Using compression wave ultrasonic transducers to measure the velocity of surface waves and hence determine dynamic modulus of elasticity for concrete', Constr. Build. Mater., 10(4), 237-242 https://doi.org/10.1016/0950-0618(96)00003-7
  25. Sellone, F. (2005), Fondamenti di Analisi Statistica dei Segnali, Politecnico di Torino-Class Notes
  26. Sharif, A., Rahman, M.K., Al-Gahtani, A.S. and Hameeduddin, M. (2006), 'Behaviour of patch repair of axially loaded reinforced concrete beams', Cement Concrete Comp., 28, 734-741 https://doi.org/10.1016/j.cemconcomp.2006.05.013
  27. Taliercio, A.L.E and Gobbi, E. (1996), 'Experimental investigation on the triaxial fatigue behaviour of plain concrete', Mag. Concrete Res., 48(176), 157-172 https://doi.org/10.1680/macr.1996.48.176.157
  28. Tao, X. and Phillips, D.V. (2005), 'A simplified isotropic damage model for concrete under bi-axial stress states', Cement Concrete Comp., 27, 716-726 https://doi.org/10.1016/j.cemconcomp.2004.09.017