DOI QR코드

DOI QR Code

Sliding mode control based on neural network for the vibration reduction of flexible structures

  • Huang, Yong-An (School of Mechanics, Civil Engineering and Architecture, Northwestem Polytechnical University, School of Mechanical Science & Engineering, Huazhong University of Science & Technology) ;
  • Deng, Zi-Chen (School of Mechanics, Civil Engineering and Architecture, Northwestem Polytechnical University, State Key Laboratory of Structural Analysis of Industrial Equipment, Dalian University of Technology) ;
  • Li, Wen-Cheng (School of Science, Northwestem Polytechnical University)
  • 투고 : 2006.03.29
  • 심사 : 2007.02.26
  • 발행 : 2007.07.10

초록

A discrete sliding mode control (SMC) method based on hybrid model of neural network and nominal model is proposed to reduce the vibration of flexible structures, which is a robust active controller developed by using a sliding manifold approach. Since the thick boundary layer will reduce the virtue of SMC, the multilayer feed-forward neural network is adopted to model the uncertainty part. The neural network is trained by Levenberg-Marquardt backpropagation. The design objective of the sliding mode surface is based on the quadratic optimal cost function. In course of running, the input signal of SMC come from the hybrid model of the nominal model and the neural network. The simulation shows that the proposed control scheme is very effective for large uncertainty systems.

키워드

참고문헌

  1. Cavallo, A., Maria, GD. and Setola, R. (1999), 'A sliding manifold approach for vibration reduction of flexible systems', Automatica, 35(10), 1689-1696 https://doi.org/10.1016/S0005-1098(99)00068-0
  2. Cheng, X.P. and Patel, R.Y. (2003), 'Neural network based tracking control of a flexible macro-micro manipulator system', Neural Networks, 16(2), 271-286 https://doi.org/10.1016/S0893-6080(02)00229-0
  3. Cybenko, G. (1989), 'Approximation by superpositions of a sigmoidan function', Math. Control Signal, 2(4), 303-314 https://doi.org/10.1007/BF02551274
  4. DeCarlo, R.A., Zak, S.H. and Matthews, G.P. (1988), 'Variable structure control of nonlinear multivariable systems: A tutorial', Proc. ofthe IEEE, 76(3), 212-232
  5. Edwards, C. and Spurgeon, S.K. (1998), Sliding Mode Control: Theory and Applications, Taylor & Francis, London
  6. EI-Sinawi, A.H. (2004), 'Active vibration isolation of a flexible structure mounted on a vibrating elastic base', J. Sound Vib., 271(1-2), 323-337 https://doi.org/10.1016/S0022-460X(03)00771-5
  7. Ertugrul, M. and Kaynak, O. (2000), 'Neuro sliding mode control of robotic manipulators', Mechatronics, 10(12), 239-263 https://doi.org/10.1016/S0957-4158(99)00057-4
  8. Funahashi, K.-I. (1989), 'On the approximate realization of continuous mappings by neural networks', Neural Networks, 2(3), 183-192 https://doi.org/10.1016/0893-6080(89)90003-8
  9. Hang, C., Ih, C. and Wang, S.J. (1985), 'Application of adaptive control to space station', AIAA-85-1970. 707-724
  10. Hornik, K. (1991), 'Approximation capabilities of multilayer feedforward networks', Neural Networks, 4(2), 251-257 https://doi.org/10.1016/0893-6080(91)90009-T
  11. Huang, Y.A. and Deng, Z.C. (2005), 'Decentralized sliding mode control for a spacecraft flexible appendage based on fintie element method', Chinese J. Aeronaut., 18(3), 230-236 https://doi.org/10.1016/S1000-9361(11)60303-8
  12. Hung, J.Y., Gao, WB. and Hung, I.C. (1993), 'Variable structure control: A survey', IEEE T Ind. Electron., 40(1), 2-22 https://doi.org/10.1109/41.184817
  13. Hussain, M.A. and Ho, P.Y. (2004), 'Adaptive sliding mode control with neural network based hybrid models', J. Process Control, 14(2), 157-176 https://doi.org/10.1016/S0959-1524(03)00031-3
  14. Jung, W.J., Jeong, W.B., Hong, S.R. and Choi, S.B. (2004), 'Vibration control of a flexible beam structure using squeeze-mode ER mount', J. Sound Vib., 273(1-2), 185-199 https://doi.org/10.1016/S0022-460X(03)00478-4
  15. Lee, H., Kim, E. and Kang, H.-I. (2001), 'A new sliding-mode control with fuzzy boundary layer', Fuzzy Set Syst., 120(1), 135-143 https://doi.org/10.1016/S0165-0114(99)00072-X
  16. Qiu, Y.Y., Duan, B.Y., Wei, Q., Nan, RD. and Peng, B. (2002), 'Optimal distribution of the cable tensions and structural vibration control of the cable-cabin flexible structure', Struct. Eng. Mech., 14(1), 39-56 https://doi.org/10.12989/sem.2002.14.1.039
  17. Stavroulakis, G.E., Foutsitzi, G, Hadjigeorgiou, E., Marinova, D. and Baniotopoulos, C.C. (2005), 'Design and robust optimal control of smart beams with application on vibrations suppression', Adv. Eng. Softw., 36(1112), 806-813 https://doi.org/10.1016/j.advengsoft.2005.03.024
  18. Suleman, A. and Costa, A.P. (2004), 'Adaptive control of an aeroelastic flight vehicle using piezoelectric actuators', Comput. Struct., 82(17-19), 1303-1314 https://doi.org/10.1016/j.compstruc.2004.03.027
  19. Wai, R.-I., Lin, C.-M. and Hsu, C.-F. (2004), 'Adaptive fuzzy sliding-mode control for electrical servo drive', Fuzzy Set Syst., 143(2), 295-310 https://doi.org/10.1016/S0165-0114(03)00199-4
  20. Yazdizadeh, A. and Khorasani, K. (2002), 'Adaptive time delay neural network structures for nonlinear system identification', Neurocomputing, 47(1-4), 207-240 https://doi.org/10.1016/S0925-2312(01)00589-6

피인용 문헌

  1. Modeling and Computation for the High-Speed Rotating Flexible Structure vol.130, pp.4, 2008, https://doi.org/10.1115/1.2890386