DOI QR코드

DOI QR Code

Numerical model for bolted T-stubs with two bolt rows

  • Daidie, Alain (Toulouse Mechanical Engineering Laboratory, INSA Toulouse) ;
  • Chakhari, Jamel (Toulouse Mechanical Engineering Laboratory, INSA Toulouse, Solid Mechanics, Structures and Technological Developments Laboratory, HSST Tunis) ;
  • Zghal, Ali (Solid Mechanics, Structures and Technological Developments Laboratory, HSST Tunis)
  • Received : 2006.06.12
  • Accepted : 2006.12.04
  • Published : 2007.06.20

Abstract

This article presents a numerical tool for dimensioning two-threaded fasteners connecting prismatic parts subjected to fatigue tension loads that are coplanar with the screw axis. A simplified numerical model is developed from unidirectional finite elements, modeling the connected parts and screws with bent elements and the elastic contact layer between the parts with springs. An algorithm updating the contact stiffness matrix, calculating forces and displacements at each node of the structure and thus normal stresses in the screws in both static and fatigue is further developed using C language. An experimental study is also conducted in parallel with the numerical approach to validate the developed model assumptions, the numerical model and the 3D finite element results. Since stiffness values for the compressive zones in the parts are analytically difficult to determine, a statistical software method is used, from which a tuning factor is derived for identifying these stiffness values. The method is also applied to set out the influence of each parameter on the fatigue behaviour of each screw. Finally, the developed model will be used to establish a new, sophisticated, fast and accurate tool for dimensioning bolted mechanical structures.

Keywords

References

  1. Agatonovic, P. (1985), 'Beam model of bolted flanged connection', En. Comput., March 21, 2, Pineridge Press Ltd, 21-29
  2. AI-Jabri, K.S., Seibi, A. and Karrech, A. (2006), 'Modelling of unstiffened flush end-plate bolted connections in fire', J. Constr. Steel Res., 62, 151-159 https://doi.org/10.1016/j.jcsr.2005.04.016
  3. Alkatan, E, Stephan, P. and Guillot, J. (2003), 'Equivalent stiffuess of screw head in preloaded bolted connections', Proc. of 8th AIP-PRIMECA National Congress, March, La Plagne-Montalbert France, 1-10
  4. Alkatan, F. (2005), Stiffness Modeling of Preloaded Threaded Elements Connections. PhD Thesis, INSA of Toulouse France, Order $N^{\circ}$ 809, December
  5. Allen, C.T. (2003), Computation of Bolted Joint Stiffness Using Train Energy. Thesis, UMI 1417397, Huntsville, Alabama
  6. Bakhiet, E. (1994), Study of Bolted Connections Strongly Eccentric Loaded and Subjected to Fatigue Stresses, PhD Thesis $N^{\circ}$ 319, INSA of Toulouse France
  7. Broughton, W.R., Cracher, L.B., Grower, M.R.L. and Shaw, R.M. (2004), Assessment of Predictive Analysis for Bonded and Bolted T-Joints, Project MMSll, Report 4
  8. Bulatovic, R. and Jovanovic, J. (2000), 'An analysis of the mathematical models in deformation process of eccentrically loaded bolts', Mech. Eng., 1(7), 789-797
  9. Bursi, O.S. and Jaspart, J.P. (1997a), 'Benchmarks for finite element modelling of bolted steel connections', J. Constr. Steel Res., 43(3), 17-42 https://doi.org/10.1016/S0143-974X(97)00031-X
  10. Bursi, O.S. and Jaspart, J.P. (1997b), 'Calibration of a finite element model for isolated bolted end-plate steel connections', J. Constr. Steel Res., 44(3), 225-262 https://doi.org/10.1016/S0143-974X(97)00056-4
  11. Daidie, A., Lakiss, H., Leray, D. and Guillot, J. (2002), 'Application of the design of experiments method to a transversely loaded cylindrical assembly', Integrated Design and Manufacturing in Mechanical Engineering, KLUWER Academic Publishers, ISBN 1-4020-0979-8, 423-430
  12. Europan Standard E25-030 (1988), Fasterners. Threaded Connections. Design, Calculation and Mounting Conditions, AFNOR Publications, 2nd version, February, ISSN 0335-3931
  13. Fares, Y., Chaussumier, M., Daidie, A. and Guillot, J. (2006a), 'Determining the life cycle of bolts using a local approach and the Dang Van criterion', Fatigue Fract. Eng. M., 29(8), 588-596 https://doi.org/10.1111/j.1460-2695.2006.01029.x
  14. Fares, Y. (2006b), Fatigue Dimensioning of Bolted Assemblies Using Multiaxial Fatigue Criterion, PhD Thesis, $N^{\circ}$ 847, INSA of Toulouse France
  15. Fischer, R.A. (1926), 'The arrangement of field experiments', J. the Ministry of Agriculture of Great Britain, Scotland, 503-513
  16. Fukuoka, T. (1994), 'Analysis of the tightening process of bolted joint with a tensioner using springs elements', J. Pressure Vessel Technol., ASME, 116,443-448 https://doi.org/10.1115/1.2929614
  17. Girao Coelho, A.M., Simoes da Silva, L. and Bijlaard, ES.K. (2004), 'Characterization of the nonlinear behaviour of single bolted T-stub connections', Proc. of Connection in Steel Structures V, Amsterdam, June, 53-64
  18. Gitlow, R.S., Levine, D.M. and Popovich, E.A. (2006), Design for Six Sigma for Green Belts and Champions, Prentice Hall Publishers, ISBN 0-13-185524-7, 1-720
  19. Guillot, J. (1987), 'Threaded elements connection; Modeling and calculation', Ed. Engineering Techniques, Volume 1 B5560 to B5562, 75006, Paris, 1-56
  20. I-DEAS 11 NX (2004), UGS PLM Solutions Inc., I-DEAS Simulation Product Software, Release 11 ms4, 5800 Granite Parkway, Suite 600 Plano, Texas 75024, USA, http://www.ugs.com
  21. JMP (2005), The Statistical Discovery Software, Release 5.1, SAS Institute, Cary, NC, USA, http:// www.jmp.com
  22. Junker, G.H. (1986), Principle of Bolted Connections Calculation in Ultimate Service, Technical Thesis. SPSUNBARAKO S.A., Aulnay-sous-Bois
  23. Kishi, N., Ahmed, A., Yabuki, N. and Chen, W.F. (2001), 'Nonlinear finite element analysis of top- and seatangle with double web-angle connections', Struct. Eng. Mech., 12(2), 201-214 https://doi.org/10.12989/sem.2001.12.2.201
  24. Komuro, M., Kishi, N. and Chen, W.F. (2004), 'Elasto-plastic FE analysis on moment-rotation relations of topand seat-angle connections', Proc. of Connection in Steel Structures V, Amsterdam, June, 111-120
  25. Kowalske, D. (1973), Berechnung exzentrisch belasteter Flanschverbindungen. Ind. Anz. 9, (Ausgabe. Schrauben, Verbindungsel, Fedem, Normt.), H. J.
  26. Kuehl, R.O. (1999), Design of Experiments: Statistical Principles of Research Design and Analysis, ISBN 0534368344, Duxbury Press, 2nd Edition, 1-688
  27. Lehnhoff, T.F., Ko, K.I. and McKay, M.L. (1994), 'Member stiffuess and contact pressure distribution of bolted joints', J. Mech. Design, ASME, 113, 432-437
  28. Martinez-Martinez, M. (2002), Study of Threaded Assemblies Behaviour: Calculation of Thread Stripping, PhD Thesis, $N^{\circ}$ 653, INSA of Toulouse France
  29. Marty, D. (1994), Study of Bolted Flanged Connection Subjected to Fatigue Loading, Mechanical Engineering Master, INSA of Toulouse, France
  30. Montgomery, D.C. (2000), Design and Analysis of Experiments, Wiley 5th Edition, ISBN 0471316490, 1-672
  31. NF E27-009 norm (1979), Fasteners - Fatigue Test Under Axial Load, AFNOR Publications, 1st Edition, October, 1-10.
  32. Oden, I.T. and Pires, E.B. (1983), 'Non local and nonlinear friction laws and variational principles for contact problems in elasticity', J. Appl. Mech., 50, 67-76 https://doi.org/10.1115/1.3167019
  33. Rasmussen, J., Norgaard, I.B., Haastrup, O. and Haastrup, J. (1978), 'A two body contact problem with friction', Proc. of Euromech Colloquium, NR 110 Rimforsa, 115-120
  34. Razavi, H. (2004), Kinematic Hardening Cyclic Plasticity based Semi Meshless Finite Element Algorithms for Contact and Bolted Problems, PhD Thesis, UMI Number 3145832, University of Texas at Arlington
  35. Rockey, K.C., Evans, H.R., Griffiths, D.W. and Nethercot, D.A. (1983), The Finite Element Method A Basic Introduction for Engineers, Granada, London, J. Wiley & Sons, New-York, ISBN 0-246-12053-3; 0-47027459- X
  36. Sherbourne, A.N. and Bahaari, M.R (1997), 'Finite element prediction of end-plate bolted connection behaviour. I: Parametric study', J. Struct. Eng., 123(2), 157-164 https://doi.org/10.1061/(ASCE)0733-9445(1997)123:2(157)
  37. Taguchi, G. (1978), 'Performance analysis design', Int. J. Production Res., 16(6), 521-530 https://doi.org/10.1080/00207547808930043
  38. Taguchi, G. (1987), The System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs, Quality Resources Publishers, ISBN 0527916218, 1-1176
  39. Taguchi, G. (2001), 'Taguchi methods in LSI fabrication process', Statistical Methodology, IEEE Int. Workshop, 6th., 1-6
  40. Tsai, H.C. and Kelly, J.M. (2005), 'Buckling of short beams with warping effect included', Int. J. Solids Struct., 42, 239-253 https://doi.org/10.1016/j.ijsolstr.2004.07.021
  41. Vadean, A., Leray, D. and Guillot, J. (2006), 'Bolted joints for very large diameter bearings - Numerical model development', Finite Elem. Anal. Des., 42(4), 298-313 https://doi.org/10.1016/j.finel.2005.08.001
  42. VDI 2230 BLATT 1 (2003), Systematische Berechnung Hochbeanspruchter Schraubenver-bindungen Zylindrische Einschraubenverbindungen, VDI Richtlinien, ICS 21.060.10, VDI-Gesellschaft Entwicklung Konstruktion Vertrieb, Fachberuch Konstruktion, Ausschuss Schraubenverbindungen
  43. Zaharia, R. and Dubina, D. (2006), 'Stiffness of joints in bolted connected cold-formed steel trusses', J. Constr. Steel Res., 62, 240-249 https://doi.org/10.1016/j.jcsr.2005.07.002

Cited by

  1. Study of an interference fit fastener assembly by finite element modelling, analysis and experiment vol.6, pp.3, 2012, https://doi.org/10.1007/s12008-012-0146-z
  2. Numerical model for two-bolted joints subjected to compressive loading vol.44, pp.4, 2008, https://doi.org/10.1016/j.finel.2007.11.010
  3. Détermination de la souplesse hors plan d’un assemblage de composites boulonnés à l’aide d’une démarche d’homogénéisation vol.106, pp.3, 2018, https://doi.org/10.1051/mattech/2018052
  4. Cyclic behaviour of bearing-type bolted connections with slot bolt holes pp.2048-4011, 2018, https://doi.org/10.1177/1369433218800835
  5. Modeling and analysis of a bolted joint under tension and shear loads vol.43, pp.3, 2007, https://doi.org/10.1139/tcsme-2018-0042