DOI QR코드

DOI QR Code

Discrete approaches in evolution strategies based optimum design of steel frames

  • Hasancebi, O. (Department of Civil Engineering, Middle East Technical University)
  • Received : 2006.07.14
  • Accepted : 2006.11.24
  • Published : 2007.05.30

Abstract

The three different approaches (reformulations) of evolution strategies (ESs) have been proposed in the literature as extensions of the technique for solving discrete problems. This study implements an extensive research on application, evaluation and comparison of them in discrete optimum design of steel frames. A unified formulation is first developed to explain these approaches, so that differences and similarities between their inherent search mechanisms can clearly be identified. Two examples from practical design of steel frames are studied next to measure their performances in locating the optimum. Extensive numerical experimentations are performed in both examples to facilitate a statistical analysis of their convergence characteristics. The results obtained are presented in the histograms demonstrating the distribution of the best designs located by each approach. In addition, an average improvement of the best design during the course of evolution is plotted in each case to compare their relative convergence rates.

Keywords

References

  1. AISC-ASD (American Institute of Steel Construction-Allowable Stress Design). (1989), Manual of Steel Constnlction-Allowable Stress Design
  2. ASCE 7-98 (American Society of Civil Engineers). (1998), Minimum Design Loads for Buildings and Other Structures
  3. Back, T. (1996), Evolutionary Algorithms in Theory and Practice, Oxford University Press, New York
  4. Back, T. and Schlitz, M. (1995), 'Evolutionary strategies for mixed-integer optimization of optical multilayer systems', Proc. of the 4th Annual Conf. on Evolutionary Programming, McDonnel, J.R., Reynolds, R.G. and Fogel, D.B. (eds.), MIT Press, Cambridge, MA, 33-51
  5. Back, T. and Schwefel, H.-P. (1993), 'An overview of evolutionary algorithms for parameter optimization', Evolution. Computation, 1, 1-23 https://doi.org/10.1162/evco.1993.1.1.1
  6. Back, T. and Schwefel, H.-P. (1995), 'Evolution strategies I: Variants and their computational implementation', In Genetic Algorithms in Engineering and Computer Science, Winter, G., Perieaux, J., Gala, M. and Cuesta, P. (eds.), Wiley, Chichester, 111-126
  7. Beyer, H.-G. and Schwefel, H.-P. (2002), 'Evolution strategies: A comprehensive introduction', Natural Computing, 1, 3-52 https://doi.org/10.1023/A:1015059928466
  8. Cai, J. and Thierauf, G. (1993), 'Discrete structural optimization using evolution strategies', In Neural Networks and Combinatorial Optimization in Civil and Structural Engineering, Topping, B.H.V. and Khan, A.I. (eds.), Civil-Comp Limited, Edinburgh
  9. Cai, J. and Thierauf, G. (1996), 'Evolution strategies for solving discrete optimization problems', Adv. Eng. Softw., 2, 177-183
  10. Ebenau, C., Rottschafer, J. and Thierauf, G. (2005), 'An advanced evolutionary strategy with an adaptive penalty function for mixed-discrete structural optimization', Adv. Eng. Softw., 36, 29-38 https://doi.org/10.1016/j.advengsoft.2003.10.008
  11. Erbatur, F., Hasanyebi, O., Tutuncu, I. and Kilic, H. (2000), 'Optimal design of planar and space structures with genetic algorithms', Comput. Struct., 75, 209-224 https://doi.org/10.1016/S0045-7949(99)00084-X
  12. Grierson, D.E. and Lee, W.H. (1984), 'Optimum synthesis of steel frameworks using standard sections', J. Struct. Mech., 12, 335-370 https://doi.org/10.1080/03601218408907476
  13. Hajela, P. (1999), 'Nongradient methods in muitidisciplinary design optimization - status and potential', J. Aircraft, 36, 255-265 https://doi.org/10.2514/2.2432
  14. Hasanyebi, O. (2006), 'Optimization of truss bridges within a specified design domain using evolution strategies', Eng Optimiz., in press
  15. Hasanyebi, O. and Ulusoy, A.F. (2005), 'Discrete and continuous structural optimization using evolution strategies', Proc. of the 8th Int. Conf. on the Application of Artificial Intelligence to Civil. Structural and Environmental Engineering, Topping, B.H.V. (ed.), Civil-Comp Press, Rome
  16. Huang, M.-W. and Arora, J.S. (1997), 'Optimal design of steel structures using standard sections', Struct. Multidiscip. O., 14, 24-35 https://doi.org/10.1007/BF01197555
  17. Lagaros, N.D., Papadrakakis, M. and Kokossalakis, G. (2002), 'Structural optimization using evolutionary algorithms', Comput. Struct., 80, 571-589 https://doi.org/10.1016/S0045-7949(02)00027-5
  18. Papadrakakis, M. and Lagaros, N.D. (1998), 'Advanced solution methods in structural optimization based on evolution strategies', Eng. Comput., 15, 12-34 https://doi.org/10.1108/02644409810200668
  19. Papadrakakis, M., Lagaros, N.D. and Fragakis, Y. (2003), 'Parallel computational strategies for structural optimization', Int. J. Numer. Meth. Eng., 58, 1347-1380 https://doi.org/10.1002/nme.821
  20. Rajasekaran, S., Mohan, V.S. and Khamis, O. (2004), 'The optimization of space structures using evolution strategies with functional networks', Eng. Comput., 20, 75-87 https://doi.org/10.1007/s00366-004-0268-4
  21. Rechenberg, I. (1965), 'Cybernetic solution path of an experimental problem', Royal Aircraft Establishment, Library translation No. 1122, Farnborough, Hants., UK
  22. Rechenberg, I. (1973), Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution, Frommann-Holzboog, Stuttgart
  23. Rudolph, G. (1994), 'An evolutionary algorithm for integer programming', In Parallel Problem Solving from Nature - PPSN III International Conference on Evolutionary Computation, Davidor, Y., Schwefel, H.-P. and Manner, R. (eds.), Volume 866 of Lecture Notes in Computer Science, Springer, Berlin, 139-148
  24. Saka, M.P. (1991), 'Optimum design of steel frames with stability constraints', Comput. Struct., 41, 1365-1377 https://doi.org/10.1016/0045-7949(91)90274-P
  25. Schwefel, H.-P. (1965), Kybernetische Evolution als Strategie der experimentellen Forschung in der Stromungstechnik, Diploma thesis, Technical University of Berlin
  26. Schwefel, H.-P. (1977), 'Numerische optimierung von computer-modellen mittels der evolutionsstrategie', Volume 26 of Interdisciplinary Systems Research, Basel, Birkhauser
  27. Schwefel, H.-P. (1981), Numerical Optimization of Computer Models, Wiley, Chichester
  28. Ulusoy, A.F., Erbatur, F. and Hasancebi, O. (2004), 'Discrete optimization of rigid frames via evolution strategies', Proc. of the 3rd Int. Conf. on Advances in Structural Engineering and Mechanics (ASEM'04), Choi, C.-K., Kim, S.-H. and Kwak, H.G (eds.), Seoul, Korea

Cited by

  1. Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures vol.87, pp.5-6, 2009, https://doi.org/10.1016/j.compstruc.2009.01.002
  2. Optimum design of high-rise steel buildings using an evolution strategy integrated parallel algorithm vol.89, pp.21-22, 2011, https://doi.org/10.1016/j.compstruc.2011.05.019
  3. Comparison of non-deterministic search techniques in the optimum design of real size steel frames vol.88, pp.17-18, 2010, https://doi.org/10.1016/j.compstruc.2010.06.006
  4. Mathematical and Metaheuristic Applications in Design Optimization of Steel Frame Structures: An Extensive Review vol.2013, 2013, https://doi.org/10.1155/2013/271031
  5. Hybrid Self-Adaptive Evolution Strategies Guided by Neighborhood Structures for Combinatorial Optimization Problems vol.24, pp.4, 2016, https://doi.org/10.1162/EVCO_a_00187