DOI QR코드

DOI QR Code

Confinement efficiency and size effect of FRP confined circular concrete columns

  • Yeh, Fang-Yao (Photovoltaic Technology Center, Industrial Technology Research Institute) ;
  • Chang, Kuo-Chun (Department of Civil Engineering, National Taiwan University)
  • Received : 2005.11.21
  • Accepted : 2006.11.10
  • Published : 2007.05.30

Abstract

The objective of this paper is to develop a finite element procedure for predicting the compressive strength and ultimate axial strain of Carbon Fiber Reinforced Plastics (CFRP) confined circular concrete columns and to study the effective parameters of confinement efficiency for helping design of CFRP retrofit technology. The behavior of concrete confined with CFRP is studied using the nonlinear finite element method. In this paper, effects of column size, CFRP volumetric ratio and plain concrete strength are studied. The confined concrete nonlinear constitutive relation, concrete failure criterion and stiffness reduction methodology after concrete cracking or crushing are adopted. First, the finite element model is verified by comparing the numerical solutions of confined concrete with experimental results. Then the effects of column size, CFRP volumetric ratio and plain concrete strength on the peak strength and ductility of the confined concrete are considered. The results of parametric study indicate that the normalized column axial strength increases with increasing CFRP volumetric ratio, but without size effect for columns with the same CFRP volumetric ratio. As the same, the increase in column ductility depends on CFRP volumetric ratio but without size effect for columns with the same CFRP volumetric ratio.

Keywords

Acknowledgement

Supported by : National Science Council

References

  1. ABAQUS, Inc. (2005), ABAQUS Theory Manual and Analysis User s Manual, Version 6.5, Providence, Rhode Island
  2. Fardis, M.N. and Khalili, H. (1982), 'FRP-encased concrete as a structural material', Mag. Concrete Res., 34(122), 191-202 https://doi.org/10.1680/macr.1982.34.121.191
  3. Hoshikuma, J., Kawashima, K., Nagaya, K. and Taylor, A.W. (1997), 'Stress-strain model for confined reinforced concrete in bridge piers', J. Struct. Eng., ASCE, 123(5), 624-633 https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(624)
  4. Karbhari, V.M. and Gao, Y. (1997), 'Composite jacketed concrete under unaxial compression verification of simple design equations', J. Mater. Civil Eng., ASCE, 9(4), 185-193 https://doi.org/10.1061/(ASCE)0899-1561(1997)9:4(185)
  5. Kawashima, K., Hosotani, M. and Hoshikuma, J. (1997), 'A model for confinement effect for concrete cylinders confined by carbon fiber sheets', NCEER-INCEDE Workshop on Earthquake Engrg. Frontiers of Transp Fac., NCEER, State University of New York, Buffalo, N.Y
  6. Kupfer, H., Hilsdrof, H.K. and Rusch, H. (1969), 'Behavior of concrete under biaxial stresses', J. Am. Concrete Inst., 66, 656-666
  7. Li, Y.F., Lin, C.T. and Sung, Y.Y. (2003), 'A constitutive model for concrete confined with carbon fiber reinforced plastics', Mech. Mater., 35(3-6), 603-619 https://doi.org/10.1016/S0167-6636(02)00288-0
  8. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), 'Theoretical stress strain model for confined concrete', J. Struct. Eng., ASCE, 114(8), 1804-1826 https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  9. Miyauchi, K, Inoue, S., Kuroda, T. and Kobayashi, A. (1999), 'Strengthening effects of concrete columns with carbon fiber sheet', Transactions Japan Concrete Inst., 114, 143-150
  10. Picher, F., Rochette, P. and Labossiere, P. (1996), 'Confinement of concrete cylinders with CFRP', Proc., First Int. Conf. on Composites Infrastructures, Tucson, Ariz., 829-841
  11. Popovics, S. (1973), 'A numerical approach to the complete stress-strain curves for concrete', Cement Concrete Res., 3(5), 583-599 https://doi.org/10.1016/0008-8846(73)90096-3
  12. Saafi, M., Toutanji, H.A. and Li, Z. (1999), 'Behavior of concrete column confined with fiber reinforced polymer tubes', ACI Mater. J., ASCE, 96(4), 500-509
  13. Samaan, M., Mirmiran, A. and Shahawy, M. (1998), 'Model of concrete confmed with fiber composite', J.Struct. Eng., ASCE, 124(9), 1025-1031 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025)
  14. Spoelstra, M.R. and Monti, G. (1999), 'FRP-confined concrete model', J. Compos. Constr., ASCE, 3(3), 143-150 https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143)
  15. Toutanji, H.A. (1999), 'Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets', ACI Mater. J., 96(3), 397-404
  16. Tsai, Stephen W. and Hahn, H.T. (1980), Introduction to Composite Materials, Section 7.2, Technomic Publishing Company
  17. Tsai, Stephen W. (1987), Composites Design, Third Edition, Section 11.6, Think Composites, Dayton, Ohio
  18. Willam, K.J. and Warnke, E.P. (1975), 'Constitutive model for the triaxial behavior of concrete', Int. Assoc. Bridge Struct. Eng. Proc., 19, 1-30
  19. Xiao, Y. and Wu, H. (2000), 'Compressive behavior of concrete confined by carbon fiber composite jackets', J. Mater. Civil Eng., ASCE, 12(2), 139-146 https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(139)
  20. Yuan, X.F., Lam, L. and Smith, S.T. (2001), 'FRP-confined RC columns under combined bending and compression: A comparative study of concrete stress-strain models', FRP Compos. Civil Eng., I, 749-758
  21. Yunus, S.M. and Kohnke, P.C. (1989), 'An efficient through-thickness integration scheme in an unlimited layer doubly curved isoparametric composite shell element', Int. J. Numer. Meth. Eng., 28, 2777-2793 https://doi.org/10.1002/nme.1620281205

Cited by

  1. Refinement of a Design-Oriented Stress–Strain Model for FRP-Confined Concrete vol.13, pp.4, 2009, https://doi.org/10.1061/(ASCE)CC.1943-5614.0000012
  2. Size and Shape Effects on Strength and Ultimate Strain in FRP Confined Rectangular Concrete Columns vol.28, pp.04, 2012, https://doi.org/10.1017/jmech.2012.118
  3. FRP-Confined Self-Compacting Concrete under Axial Compression vol.26, pp.11, 2014, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000993
  4. Experiment and modeling on axial behavior of carbon fiber reinforced polymer confined concrete cylinders with different sizes vol.31, pp.6, 2012, https://doi.org/10.1177/0731684412439347
  5. Experimental study on reinforced high-strength concrete short columns confined with AFRP sheets vol.10, pp.6, 2007, https://doi.org/10.12989/scs.2010.10.6.501
  6. Design for moment redistribution in FRP plated RC beams vol.38, pp.6, 2007, https://doi.org/10.12989/sem.2011.38.6.697
  7. Concurrent flexural strength and deformability design of high-performance concrete beams vol.40, pp.4, 2007, https://doi.org/10.12989/sem.2011.40.4.541
  8. Software for adaptable eccentric analysis of confined concrete circular columns vol.10, pp.4, 2012, https://doi.org/10.12989/cac.2012.10.4.331