References
- 'ANSYS' Software and Manual (Version 5.6)
- Bathe, K.J. and Dvorkin, E.H. (1985), 'A four node plate bending element based on Mindlin/Reissner plate theory and mixed interpolation', Int. J. Numer. Meth. Eng., 21, 367-383 https://doi.org/10.1002/nme.1620210213
- Batoz, J.L. and Tahar, M.B. (1982), 'Evaluation of a new quadrilateral thin plate bending element', Int. J. Numer. Meth. Eng., 18, 1655-1677 https://doi.org/10.1002/nme.1620181106
- Dhananjaya, H.R. (2004), 'A family of plate bending finite elements using Integrated Force Method' - Ph.D thesis, Department of Civil Engineering, Indian Institute of Science, Bangalore-12, India
- Dhatt, G. (1969), 'Numerical analysis of thin shells by curved triangular elements based on discrete Kirchhoff Hypothesis', Symposium, Nashville, ASCE, November, 255-278
- Jane Liu, Riggs, H.R. and Alexander Tessler (2000), 'A four node shear-deformable shell element developed via explicit Kirchhoff constraints', Int. J. Numer. Meth. Eng., 49, 1065-1086 https://doi.org/10.1002/1097-0207(20001120)49:8<1065::AID-NME992>3.0.CO;2-5
- Kaneko, L., Lawo, H. and Thierauf, G. (1983), 'On computational procedures for the force method', Int. J. Numer. Meth. Eng., 18, 1469-1495 https://doi.org/10.1002/nme.1620181004
- Kikuchi, F. and Ando, Y. (1972), 'Some finite element solutions for plate bending problems by simplified hybrid displacement method', Nucl. Eng. Des., 23, 155-178 https://doi.org/10.1016/0029-5493(72)90046-5
- Krishnam Raju, N.R.B. and Nagabhushanam, J. (2000), 'Non-linear structural analysis using integrated force method', Sadhana, 25(4), 353-365 https://doi.org/10.1007/BF03029720
- Love, A.E.H. (1944), A Treatise on the Mathematical Theory of Elasticity, Dover, New York
- Malkus, D.S. and Hughes, T.J.R. (1978), 'Mixed finite element methods-reduced and selective integration Techniques: A unification concept', Comput. Method Appl. Mech. Eng., 15, 63-81 https://doi.org/10.1016/0045-7825(78)90005-1
- Mallikarjuna Rao, K. and Srinivasa, U. (2001), 'A set of pathological tests to validate new finite elements', Sadhana, 26(6), 549-590 https://doi.org/10.1007/BF02703459
- Nagabhushanam, J. and Patnaik, S.N. (1990), 'General purpose program to generate compatibility matrix for the Integrated Force Method', AIAA J., 28, 1838-1842 https://doi.org/10.2514/3.10488
- Nagabhushanam, J. and Srinivas, J. (1991), 'Automatic generation of sparse and banded compatibility matrix for the Integrated Force Method', Computer Mechanics '91, Int. Conf. on Comput. Eng. Sci., Patras, Greece, 20-25
- 'NISA' Software and Manual (Version 9.3)
- Patnaik, S.N. (1973), 'An integrated force method for discrete analysis', Int. J. Numer. Meth. Eng., 41, 237-251
- Patnaik, S.N. (1986), 'The variational energy formulation for the Integrated Force Method', AIAA J., 24, 129-137 https://doi.org/10.2514/3.9232
- Patnaik, S.N., Igor, K., Hopkins, D.A. and Sunil Saigal. (1996), 'Completed Beltrami-Michell Formulation for analyzing mixed boundary value problems in elasticity', AIAA J., 34(1), 143-148 https://doi.org/10.2514/3.13034
- Patnaik, S.N. and Yadagiri, S. (1976), 'Frequency analysis of structures by Integrated Force Method', Comput. Method. Appl. Mech. Eng., 9, 245-265 https://doi.org/10.1016/0045-7825(76)90030-X
- Reissner, E. (1945), 'The effect of transverse shear deformation on bending of plates', J. Appl. Mech., 12, A69-A77
- Robinson, J. and Haggenmacher, G.W. (1971), 'Some new developments in matrix force Analysis', Proc. of Recent Advances in Matrix Methods of Structural Analysis and Design, University Alabama, 183-228
- Stricklin, J.A., Haislor, W., Tisdale, P. and Ganderson, R. (1969), 'A rapidly converging triangular plate element', AIAA J., 7, 180-181 https://doi.org/10.2514/3.5068
- Timoshenko, S.P. and Krieger, S.W. (1959), Theory of Plates and Shells, Second Edition, McGraw Hill, New York
- Wanji Chen and Cheung Y.K. (2000), 'Refined quadrilateral element based on Mindlin/Reissner plate theory', Int. J. Numer. Meth. Eng., 47, 605-627 https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<605::AID-NME785>3.0.CO;2-E
- Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971), 'Reduced integration technique in general analysis of plates and shells', Int. J. Numer. Meth. Eng., 3, 275-290 https://doi.org/10.1002/nme.1620030211
Cited by
- Application of the dual integrated force method to the analysis of the off-axis three-point flexure test of unidirectional composites vol.50, pp.3, 2016, https://doi.org/10.1177/0021998315576377
- Comparison between the stiffness method and the hybrid method applied to a circular ring vol.40, pp.2, 2018, https://doi.org/10.1007/s40430-018-1013-z
- New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using Integrated Force Method vol.33, pp.4, 2007, https://doi.org/10.12989/sem.2009.33.4.485
- New twelve node serendipity quadrilateral plate bending element based on Mindlin-Reissner theory using Integrated Force Method vol.36, pp.5, 2007, https://doi.org/10.12989/sem.2010.36.5.625
- Closed form solutions for element equilibrium and flexibility matrices of eight node rectangular plate bending element using integrated force method vol.40, pp.1, 2011, https://doi.org/10.12989/sem.2011.40.1.121