참고문헌
- Amold, D.N., Boffi, D. and Falk, R.S. (2002), 'Approximation by quadrilateral finite elements', Math. Comp., 71, 909-922 https://doi.org/10.1090/S0025-5718-02-01439-4
- Babuska, I. and Stroubolis, T. (2001) The Finite Element method and its Reliability, Clarendon Press, Oxford
- Backlund, J. (1978), 'On isoparametric elements', Int. J. Numer. Meth. Eng., 12, 731-732 https://doi.org/10.1002/nme.1620120418
- Gifford, L.N. (1979), 'More on distorted isoparametric elements', Int. J. Numer. Meth. Eng., 14, 290-291 https://doi.org/10.1002/nme.1620140212
- Jafarali, P. (2005), Personal Communication
- Ooi, E.T., Rajendran, S. and Yeo, J.H. (2004), 'A 20-node hexahedron element with enhanced distortion tolerance', Int. J. Numer. Meth. Eng., 60, 2501-2530 https://doi.org/10.1002/nme.1056
- Prathap, G. (1993), The Finite Element Method in Structural Mechanics, Kluwer Academic Press, Dordrecht
- Prathap, G. and Mukherjee, S. (2003), The Engineer Grapples with Theorem 1.1 and Lemma 6.3 of Strang and Fix, Current Sci., Vol. 85, 7, 989-994
- Prathap, G. and Mukherjee, S. (2004), Management-by-stress Model of Finite Element Computation. Research Report CM 0405, CSIR Centre for Mathematical Modelling and Computer Simulation, Bangalore, November 2004
- Prathap, G., Senthilkumar, V. and Manju, S. (2005), Mesh Distortion Immunity of Finite Elements and the Bestfit Paradigm. Research Report CM 0501, CSIR Centre for Mathematical Modelling and Computer Simulation, Bangalore, February 2005
- Rajendran, S. and Liew, K.M. (2003), 'A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic field', Int. J. Numer. Meth. Eng., 58, 1718-1748
- Rajendran, S. and Subramanian, S. (2004), 'Mesh distortion sensitivity of 8-node plane elasticity elements based on parametric, metric, parametric-metric, and metric-parametric formulations', Struct. Eng. Mech., 17, 767-788 https://doi.org/10.12989/sem.2004.17.6.767
- Rajendran, S. (2005), Personal Communication
- Strang, G. and Fix, G.J. (1973) An Analysis of the Finite Element Method, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Englewood Cliffs, NJ
- Stricklin, J.A., Ho, W.S., Richardson, E.Q. and Haisler, W.E. (1977), 'On isoparametric vs. linear strain triangular elements', Int. J. Numer. Meth. Eng., 11, 1041-1043 https://doi.org/10.1002/nme.1620110610
피인용 문헌
- Use of unsymmetric finite element method in impact analysis of composite laminates vol.47, pp.4, 2011, https://doi.org/10.1016/j.finel.2010.12.016
- High-performance unsymmetric 3-node triangular membrane element with drilling DOFs can correctly undertake in-plane moments vol.35, pp.7, 2018, https://doi.org/10.1108/EC-04-2018-0200
- Mesh distortion, locking and the use of metric trial functions for displacement type finite elements vol.29, pp.3, 2007, https://doi.org/10.12989/sem.2008.29.3.289
- An improved parametric formulation for the variationally correct distortion immune three-noded bar element vol.38, pp.3, 2007, https://doi.org/10.12989/sem.2011.38.3.261
- Function space formulation of the 3-noded distorted Timoshenko metric beam element vol.69, pp.6, 2007, https://doi.org/10.12989/sem.2019.69.6.615