References
- Abramovich, H. and Elishakoff, I. (1990), 'Influence of shear deformation and rotary inertia on vibration frequencies via Love's equations', J. Sound Vib., 137(3), 516-522 https://doi.org/10.1016/0022-460X(90)90816-I
- Abramovich, H. and Hamburger, O. (1991), 'Vibration of a cantilever Timoshenko beam with a tip mass', J. Sound Vib., 148(1), 162-170 https://doi.org/10.1016/0022-460X(91)90828-8
- Abramovich, H. and Hamburger, O. (1992), 'Vibration of a uniform cantilever Timoshenko beam withtranslational and rotational springs and with a tip mass', J. Sound Vib., 154(1), 67-80 https://doi.org/10.1016/0022-460X(92)90404-L
- Cha, P.D. (2001), 'Natural frequencies of a linear elastica carrying a number of sprung masses', J. Sound Vib., 247, 185-194 https://doi.org/10.1006/jsvi.2001.3623
- Chen, D.W. and Wu, J.S. (2002), 'The exact solutions for the natural frequencies and mode shapes of nonuniform beams with multiple spring-mass systems', J. Sound Vib., 255, 299-232 https://doi.org/10.1006/jsvi.2001.4156
- Faires, J.D. and Burden, R.L. (1993), Numerical Method, PWD Publishing Company, Boston, U.S.A
- Gurgoze, M. (1998), 'On the alternative formulation of the frequency equation of a Bernoulli-Euler beam to which several spring-mass systems are attached in-span', J. Sound Vib., 217, 585-595 https://doi.org/10.1006/jsvi.1998.1796
- Laura, P.A.A., Susemihl, E.A., Pombo, J.L., Luisoni, L.E. and Gelos, R. (1977), 'On the dynamic behaviour of structural elements carrying elastically mounted concentrated masses', Appl. Acoust., 10, 121-145 https://doi.org/10.1016/0003-682X(77)90021-4
- Meirovitch, L. (1967), Analytical Methods in Vibrations, Macmillan Company, London, U.K
- Qiao, H., Li, Q.S. and Li, G.O. (2002), 'Vibratory characteristic of non-uniform Euler-Bernoulli beams carrying an arbitrary number of spring-mass systems', Int. J. Mech. Sci., 44, 725-743 https://doi.org/10.1016/S0020-7403(02)00007-3
- Rossi, R.E., Laura, P.A.A., Avalos, D.R. and Larrondo, H. (1993), 'Free vibrations of Timoshenko beam carrying elastically mounted concentrated masses', J. Sound Vib., 165(2), 209-223 https://doi.org/10.1006/jsvi.1993.1254
- Thomson, W.T. (1981), Theory of Vibration with Application, Englewood Cliffs, New Jersey, Prentice-Hill
- Wu, J.S. and Chen, D.W. (2001), 'Free vibration analysis of a Timoshenko beam carrying multiple spring-mass systems by using the numerical assembly technique', Int. J. Numer. Eng., 50, 1039-1058 https://doi.org/10.1002/1097-0207(20010220)50:5<1039::AID-NME60>3.0.CO;2-D
- Wu, J.S. and Chou, H.M. (1998), 'Free vibration analysis of a cantilever beam carrying any number of elastically mounted point masses with analytical-and-numerical-combined method', J. Sound Vib., 213(2), 317-332 https://doi.org/10.1006/jsvi.1997.1501
- Wu, J.S. and Chou, H.M. (1999), 'A new approach for determining the natural frequencies and mode shapes of a uniform beam carrying any number of sprung masses', J. Sound Vib., 220(3), 451-468 https://doi.org/10.1006/jsvi.1998.1958
Cited by
- Free vibration of beams carrying spring-mass systems − A dynamic stiffness approach vol.104-105, 2012, https://doi.org/10.1016/j.compstruc.2012.02.020
- Effect of axial force on free vibration of Timoshenko multi-span beam carrying multiple spring-mass systems vol.50, pp.6, 2008, https://doi.org/10.1016/j.ijmecsci.2008.03.001
- Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias vol.53, pp.3, 2015, https://doi.org/10.12989/sem.2015.53.3.537
- Transverse Vibration Analysis of Euler-Bernoulli Beams Carrying Concentrated Masses with Rotatory Inertia at Both Ends vol.118-120, pp.1662-8985, 2010, https://doi.org/10.4028/www.scientific.net/AMR.118-120.925
- Free vibration analysis of a uniform beam carrying multiple spring-mass systems with masses of the springs considered vol.28, pp.6, 2007, https://doi.org/10.12989/sem.2008.28.6.659
- A retrofitting method for torsionally sensitive buildings using evolutionary algorithms vol.12, pp.3, 2017, https://doi.org/10.12989/eas.2017.12.3.309
- Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems vol.63, pp.4, 2017, https://doi.org/10.12989/sem.2017.63.4.551
- Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study vol.26, pp.3, 2020, https://doi.org/10.12989/cac.2020.26.3.285
- Experimental study of moment carrying behavior of typical Tibetan timber beam-column joints vol.24, pp.11, 2007, https://doi.org/10.1177/13694332211001503
- Dynamic Response of Wooden Columns in Traditional Timber Structures Under Horizontal Earthquake vol.21, pp.10, 2021, https://doi.org/10.1142/s0219455421501340
- Cyclic response of laminated bamboo lumber nailed connection: Theoretical modelling and experimental investigations vol.35, pp.None, 2007, https://doi.org/10.1016/j.istruc.2021.10.086