DOI QR코드

DOI QR Code

Optimal stacking sequence of laminated anisotropic cylindrical panel using genetic algorithm

  • Alibeigloo, A. (Mechanical Engineering Department, Bu-AliSina University) ;
  • Shakeri, M. (Mechanical Engineering Department, Amirkabir University of Technology) ;
  • Morowa, A. (Mechanical Engineering Department, Amirkabir University of Technology)
  • Received : 2005.06.21
  • Accepted : 2006.09.15
  • Published : 2007.04.20

Abstract

This paper presents stacking sequence optimization of laminated angle-ply cylindrical panel based on natural frequency. Finite element method (FEM) is used to obtain the vibration characteristic of an anisotropic panel using the first order shear deformation theory(FSDT) and genetic algorithm (GA) is used to obtain the optimal stacking sequence of the layers. Cylindrical panel has finite length and arbitrary boundary conditions. The thicknesses of the layers are assumed constant and their angles are specified as design variables. The effect of the number of plies and boundary conditions in the fitness function is considered. Numerical examples are presented for four, six and eight layered anisotropic cylindrical panels.

Keywords

References

  1. Byon, O. (1998), 'Optimizing lamination of hybrid thick-walled cylindrical shell under external pressure by using a genetic algorithm', J. Thermoplas Compos. Mater., 5(11), 417
  2. Chen, H.P. and Karunaratne, R. (2002), 'Optimum stacking sequence design of composite laminates using genetic algorithms', Int. SAMPE Symposium Exhibition, 47, 1402-1414
  3. Ganapathi, M., Patel, B.P. and Patel, H.G. (2004), 'Free flexural vibration behavior of laminated angle-ply elliptical cylindrical shells', Comput. Struct., 82, 509-518 https://doi.org/10.1016/j.compstruc.2003.10.016
  4. Goldberg, D.E. (1993), 'Genetic algorithms in search optimization and machine learning', New York, Addison-Wesley
  5. Jianqlao, Y.E. and Soldatos, K.P. (1994), 'Three-dimensional vibration of laminated cylinders and cylindrical panels with symmetric or antisymmetric cross-ply lay-up', Compos. Eng., 4(4), 429-444 https://doi.org/10.1016/S0961-9526(09)80016-6
  6. Kim, C.W., Hwang, W. and Park, H.C. (1997), 'Stacking sequence optimization of laminated plate', Comps. Struct., 3(39), 283-288
  7. Kogiso, N. and et al. (1994), 'Genetic algorithms with local improvement for composite laminate design', Struct. Optim., 7, 207-218 https://doi.org/10.1007/BF01743714
  8. Negendra, S., Gurdal, D. and Watson, L.T. (1996), 'Improved genetic algorithm for design of stiffened composite panels', Comput. Struct., 58, 543-555 https://doi.org/10.1016/0045-7949(95)00160-I
  9. Park, J.H., Hwang, J.H. and Lee, C.S. (2001), 'Stacking sequence design of composite laminates for maximum strength using genetic algorithm', Compos. Struct., 2(52), 217
  10. Riche, R. and Haftkaa, R.T. (1993), 'Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm', AIAA J., 31, 951-956 https://doi.org/10.2514/3.11710
  11. Sadagopan, D. and Pitchumani, R. ( 1998), 'Application of genetic algorithms to optimal tailoring of composite materials', Compos. Sci. Technol., 58, 571-589 https://doi.org/10.1016/S0266-3538(97)00175-9
  12. Sandgren, E. and Jensen, E. (1990), 'Topological design of structural components using genetic optimization methods', ASME, AMD, Sensit. Analys. Opb. Num. Meth., 115,31-43
  13. Schmit, L.A. and Farshi, B. (1979), 'Optimum design of laminated fiber composite Plates', Int. J. Numer. Meth. Eng., 11, 623-640 https://doi.org/10.1002/nme.1620110403
  14. Shakeri, M., Yas, M.H. and Ghasemi, Gol M. (2005), 'Optimal stacking sequence of laminated cylindrical shells using genetic algorithm', Mech. Advanced Mater. Struct., 12, 305-312 https://doi.org/10.1080/15376490590898501
  15. Sivakumar, K. (1998), 'Optimum design of laminated composite plates with cutouts using a genetic algorithm', Compos. Struct., 3(42), 265
  16. Soremekun, G, Gurdal, Z. and Kassapoglou, C. (2002), 'Stacking sequence blending of multiple composite laminates using genetic algorithms', Compos. Struct., 1(56), 53
  17. Tabakov, P.Y. (2001), 'Multi-dimensional design optimization of laminated structures using an improved genetic algorithm', Compos. Struct., 2(54), 349
  18. Uemura, M. and Fukunaga, H. (1981), 'Probabilistic burst strength of filament wound cylinders under internal pressure', Compos. Mater., 462-479
  19. Walker, M. and Smith, R.E. (2003), 'A technique for the multi-objective optimization of laminated composite structures using genetic algorithm and finite element analysis', Compos. Struct., 62, 123-128 https://doi.org/10.1016/S0263-8223(03)00098-9

Cited by

  1. Conservative Failure Criteria for Optimal Design of Composite Structures Including Effect of Shear Loading vol.19, pp.8, 2012, https://doi.org/10.1080/15376494.2011.581408
  2. Optimal design of composite laminates for minimizing delamination stresses by particle swarm optimization combined with FEM vol.31, pp.4, 2009, https://doi.org/10.12989/sem.2009.31.4.407
  3. Optimum Design of Composite Structures: A Literature Survey (1969–2009) vol.36, pp.1, 2017, https://doi.org/10.1177/0731684416668262
  4. Global optimization of laminated cylindrical panels based on fundamental natural frequency vol.94, pp.9, 2012, https://doi.org/10.1016/j.compstruct.2012.04.005
  5. Novel genetically optimised high-displacement piezoelectric actuator with efficient use of active material vol.26, pp.9, 2017, https://doi.org/10.1088/1361-665X/aa770a
  6. Buckling Behavior of Optimal Laminated Composite Cylindrical Shells Subjected to Axial Compression and External Pressure vol.121-126, pp.1662-7482, 2011, https://doi.org/10.4028/www.scientific.net/AMM.121-126.48
  7. Three-dimensional free vibration analysis of functionally graded fiber reinforced cylindrical panels using differential quadrature method vol.37, pp.5, 2007, https://doi.org/10.12989/sem.2011.37.5.529
  8. Optimal Design of Cymbal Stack Transducer in a Piezoelectric Linear Actuator by Finite Element Method vol.2, pp.3, 2007, https://doi.org/10.1515/ehs-2015-0006