References
- Basu, P.K., Jorge, A.B., Badri, S. and Lin, J. (2003), 'Higher-order modeling of continua by finite-element, boundary-element, Meshless, and wavelet methods', Comput. Math. Appl., 46, 15-33 https://doi.org/10.1016/S0898-1221(03)90078-2
- Bertoluzza, S., Naldi, G. and Ravel, J.C. (1994), 'Wavelet methods for the numerical solution of boundary value problems on the interval', Wavelets: Theory, Algorithms, and Applications. Chui, C.K., Montefusco, L. and Puccio, L. (eds.), Academic Press, London. 425-448
- Blevins, R.D. (1979), Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold Co., New York
- Canuto, C., Tabacco, A. and Urban, K. (1999), 'The wavelet element method Part 1: Construction and analysis', Appl. Comput. Harmon. A., 6, 1-52 https://doi.org/10.1006/acha.1997.0242
- Canuto, C., Tabacco, A. and Urban, K. (2000), 'The wavelet element method Part II: Realization and additional feature in 2D and 3D', Appl. Comput. Harmon. A., 8, 123-165 https://doi.org/10.1006/acha.2000.0282
- Chen, W.H. and Wu, C.W. (1995), 'A spline wavelets element method for frame structures vibration', Comput. Mech., 16(1), 11-21 https://doi.org/10.1007/BF00369881
- Chen, W.H. and Wu, C.W. (1996), 'Extension of spline wavelets element method to membrane vibration analysis', Comput. Mech., 18(1),46-54 https://doi.org/10.1007/BF00384175
- Chen, X.F., Yang, S.J., Ma, J.X. and He, Z.J. (2004), 'The construction of wavelet finite element and, its application', Finite Elem. Anal. Des., 40(5-6), 541-554 https://doi.org/10.1016/S0168-874X(03)00077-5
- Chui, C.K. and Quak, E. (1992), 'Wavelets on a bounded interval', Numer. Math. Approx. Theory, 1, 53-57
- Cohen, A. (2003), Numerical Analysis of Wavelet Method, Elsevier Press, Amsterdam
- GangaRao, Hota Y.S. and Chaudhary, V.K. (1988), 'Analysis of skew and triangular plates in bending', Comput. Struct., 28(2), 223-235 https://doi.org/10.1016/0045-7949(88)90043-0
- Goswami, J.C., Chan, A.K. and Chui, C.K. (1995), 'On solving first-kind integral equations using wavelets on a bounded interval', IEEE T Antenn. Propag., 43, 614-622 https://doi.org/10.1109/8.387178
- Ko, J., Kurdila, A.J. and Pilant, M.S. (1997), 'Triangular wavelet based finite elements via multivalued scaling equations', Comput. Meth. Appl. Mech. Eng., 146(1-2), 1-17 https://doi.org/10.1016/S0045-7825(96)01209-1
- Liew, K.M., Xiang, Y., Kitlipomchai, S. and Wang, C.M. (1993), 'Vibration of thick skew plates based on Mindlin shear deformation plate theory', J. Sound Vib., 168(1), 39-69 https://doi.org/10.1006/jsvi.1993.1361
- Ma, J.X., Xue, J.J., Yang, S.J. and He, Z.J. (2003), 'A study of the construction and application of a Daubechies wavelet-based beam element', Finite Elem. Anal. Des., 39(10), 965-975 https://doi.org/10.1016/S0168-874X(02)00141-5
- Mallat, S.G (1999), A Wavelet Tour of Signal Processing, Academic Press, London
- Morley, L.S.D. (1963), Skew Plates and Structures, Pergamon Press, New York
- Quak, E. and Weyrich, N. (1994), 'Decomposition and Reconstruction algorithms for spline wavelets on a Bounded interval', Appl. Comput. Harmon. A., 3, 217-231
- Raju, K.K. and Hinton, E. (1980), 'Natural frequencies and modes of rhombic Mindlin plates', Earthq. Eng. Struct. Dyn., 8, 55-62 https://doi.org/10.1002/eqe.4290080106
- Shen, P.C. (1991), Spline Finite Methods in Structural Analysis, Hydraulic and Electric Press, Beijin (In Chinese)
- Shen, P.C. and He, P.X, (1995), 'Bending analysis of rectangular moderately thick plates using spline finite element method', Comput. Struct., 54(6), 1023-1029 https://doi.org/10.1016/0045-7949(94)00401-N
- Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, McGraw-Hill Press, New York
- Warburton, G.B. (1954), 'The vibration of rectangular plates', Proc. of Institution of Mechanical Engineering, London, 371-385
- Xiang, J.W., Chen, X.F., He, Y.M. and He, Z.J. (2006), 'The construction of plane elastomechanics and mindlin plate elements of B-spline wavelet on the interval', Finite Elem. Anal. Des., 42(14-15),1269-1280 https://doi.org/10.1016/j.finel.2006.06.006
- Xiang, J.W., Chen, X.F., Li, B., He, Y.M. and He, Z.J. (2006), 'Identification of crack in a beam based on finite element method of B-spline wavelet on the interval', J. Sound Vib., 296(4-5),1046-1052 https://doi.org/10.1016/j.jsv.2006.02.019
- Zhou, Y.H., Wang, J.Z. and Zheng, X.J. (1998), 'Application of wavelet Galerkin FEM to bending of beam and plate structures', Appl. Math. Mech., 19(8), 697-706
- Zienkiewicz, O.C. (1988), The Finite Element Method, McGRAW-Hill Book Company Limited, London
- Zienkiewicz, O.C. and Lefebvre, D. (1988), 'A robust triangular plate bending element of the Reissener-Mindlin type', Int. J. Numer. Methods Eng., 26,1169-1184 https://doi.org/10.1002/nme.1620260511
Cited by
- Multivariable wavelet finite element for flexible skew thin plate analysis vol.57, pp.8, 2014, https://doi.org/10.1007/s11431-014-5573-6
- A two-step approach to multi-damage detection for plate structures vol.91, 2012, https://doi.org/10.1016/j.engfracmech.2012.04.028
- Identification of damage locations based on operating deflection shape vol.28, pp.2, 2013, https://doi.org/10.1080/10589759.2012.716437
- Multivariable finite elements based on B-spline wavelet on the interval for thin plate static and vibration analysis vol.46, pp.5, 2010, https://doi.org/10.1016/j.finel.2010.01.002
- The construction of second generation wavelet-based multivariable finite elements for multiscale analysis of beam problems vol.50, pp.5, 2014, https://doi.org/10.12989/sem.2014.50.5.679
- Vibration analysis of an elastically restrained microcantilever beam under electrostatic loading using wavelet-based finite element method vol.10, pp.3, 2015, https://doi.org/10.1049/mnl.2014.0306
- Band Structures Analysis Method of Two-Dimensional Phononic Crystals Using Wavelet-Based Elements vol.7, pp.11, 2017, https://doi.org/10.3390/cryst7110328
- A study of multiscale wavelet-based elements for adaptive finite element analysis vol.41, pp.2, 2010, https://doi.org/10.1016/j.advengsoft.2009.09.008
- A new wavelet-based thin plate element using B-spline wavelet on the interval vol.41, pp.2, 2007, https://doi.org/10.1007/s00466-007-0182-x
- Quantitative nondestructive evaluation of thin plate structures using the complete frequency information from impact testing vol.28, pp.5, 2007, https://doi.org/10.12989/sem.2008.28.5.525
- Crack identification in short shafts using wavelet-based element and neural networks vol.33, pp.5, 2007, https://doi.org/10.12989/sem.2009.33.5.543
- New decoupled wavelet bases for multiresolution structural analysis vol.35, pp.2, 2007, https://doi.org/10.12989/sem.2010.35.2.175
- The numerical solution of dynamic response of SDOF systems using cubic B-spline polynomial functions vol.38, pp.2, 2007, https://doi.org/10.12989/sem.2011.38.2.211
- The construction of multivariable Reissner-Mindlin plate elements based on B-spline wavelet on the interval vol.38, pp.6, 2007, https://doi.org/10.12989/sem.2011.38.6.733
- Study on damage detection software of beam-like structures vol.39, pp.1, 2007, https://doi.org/10.12989/sem.2011.39.1.077
- NURBS-based isogeometric analysis for thin plate problems vol.41, pp.5, 2007, https://doi.org/10.12989/sem.2012.41.5.617
- Method using XFEM and SVR to predict the fatigue life of plate-like structures vol.73, pp.4, 2007, https://doi.org/10.12989/sem.2020.73.4.455