DOI QR코드

DOI QR Code

Effect of generalized thermoelasticity materials with memory

  • 투고 : 2004.11.10
  • 심사 : 2006.12.20
  • 발행 : 2007.03.30

초록

Many works have been done in classical theory of thermoelasticity in materials with memory by researchers like Nunziato, Chen and Gurtine and many others. No work is located in generalized thermoelasticity regarding materials with memory till date. The present paper deals with the wave propagation in materials with memory in generalized thermoelasticity. Plane progressive waves and Rayleigh waves have been discussed in details. In the classical theory of heat conduction it was observed that heat propagates with infinite speed. This paradox has been removed in the present discussion. The set of governing equations has been developed in the present analysis. The results of wave velocity and attenuation coefficient corresponding to low and high frequency have been obtained. For thermal wave the results show appreciable differences with those in the usual thermoelasticity theory.

키워드

참고문헌

  1. Amos, D.E. and Chen, P.J. (1970), J. Appl. Mech. 37, Series E, No.4, 1145-1146 https://doi.org/10.1115/1.3408673
  2. Bhattacharyya, R.K. (1991), Wave Propagation in Random Thermoelastic Materials with Memory, in Mathematical and Numerical Aspects of Wave Propagation Phenomena, (Strasbourg 1991), 626-634, SIMA, Philadelphia, PA, 1991; secMR92a:65021; CNO 1106033
  3. Chadwick, P. (1960), Thermoelasticity. The Dynamical Theory. Progress in Solid Mech. (Edited by Sneddon and Hill) Vol. 1, North- Holland Publishing Co. Amsterdam, 307-311
  4. Chakraborti, S. (1976), 'Waves in thermoelastic materials with memory', Bull. Math. De ta R. S. de Roumanie Tome, 20(68), nr. 1-2
  5. Chen, P.J. (1969), 'On the growth and decay of temperature rate waves of arbitrary form', ZAMP, 20, 448-453 https://doi.org/10.1007/BF01595037
  6. Chen, P.J. and Gurtin, M.E. (1970), 'On second sound in materials with memory', ZAMP, 21, 232-241 https://doi.org/10.1007/BF01590647
  7. Chirita, S. and Quintanilla, R. (1997), 'Spatial estimates in the dynamic theory of linear elastic materials with memory', Eurupean J. Mech./A Solids, 16, 723-736
  8. Dhaliwal, R.S. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustan Publ., Delhi
  9. Eringen, A.C. (1967), Mechanics of Continua, John Wiley and Sons, rUNC, New York
  10. Gao. Hongjun. (2001), 'On the exponential stability of thermoelastic problem with memory', Applicable Anal. an Int. J., 78, Mo. 3-4, 379-403 https://doi.org/10.1080/00036810108840942
  11. Green, A.E. and Lindsay, K.A (1972), Thermoelasticity, J. Elasticity, 2, 1-7 https://doi.org/10.1007/BF00045689
  12. Gurtin, M.E. and Pipkin, A.C. (1968), 'A general theory of heat conduction with finite wave speed', Arch. Rat. Mech. Anal., 31, 113-126 https://doi.org/10.1007/BF00281373
  13. Iesan, D. and Quintanilla, R. (2002), 'On a theory of interacting continua with memory', J. Thermal Stresses, 25,1161-1178 https://doi.org/10.1080/01495730290074586
  14. Lord, H.W. and Shulman, Y. (1967), 'A generalized dynamical theory of thermoelasticity', J. Mech. Phys. Solids, 15, 299-309 https://doi.org/10.1016/0022-5096(67)90024-5
  15. Matinez, F. and Quintanilla, R. (1995), 'Existenciay unicidad de soluciones para las ecuaciones de la termoelasticidad de materials con memoria', Actas III Congreso de Matematica Aplicada. (Ed. Casal et al.)
  16. McCarthy, M. (1970), Proc. Vibration Problems, 11(2), 123- 133
  17. McCarthy, M. (1970), 'Constitutive equations for thermomechanica1 materials with memory', Int. J. Eng. Sci., 8, 467 https://doi.org/10.1016/0020-7225(70)90023-6
  18. Muller, I. (1967), Arch. Rat. Mech. Anal, 118-141
  19. Naso. Maria Garzia (2003), 'Exact boundary controllability in thermoelasticity with memory', Advan. Differential Equations, 8(4),471-490
  20. Naso. Maria Garzia and Vegni. Federico. (2003), 'Asymptotic behavior for second-order systems with memory', J. Math. Anal. Appl., 286(2), 692-794
  21. Naso. Maria Garzia and Vuk, Elena. (2004), 'Asymptotic behaviour of the energy for electromagnetic system with memory', J. Math. Meth. Appl. Sci, 27(7), 819-841 https://doi.org/10.1002/mma.473
  22. Naso. Maria Garzia and Yuming. Qin. (2002), 'Global existence exponential stability in one-dimensional nonlinear thermoelasticity with thermal memory', Non Linear Anal., 51, No. 1-A, 11-32 https://doi.org/10.1016/S0362-546X(01)00810-0
  23. Nowacki, W. (1962), Thermoelasticity, Pergamon Press, 298
  24. Nunziato, J.W. (1971), 'On heat conduction in materials with memory', Q. Appl. Mech., 29, 187-204
  25. Zhou, W.M., Liu, Y, Jiang, R.H., Qi, X. and Liu, Y.N. (2003), 'Magnetoelastic and thermoelastic shape memory effect in a Co-Ni single crystal', Applied Phys. Letters, 82(5), 760-762 https://doi.org/10.1063/1.1539907

피인용 문헌

  1. Response of temperature dependence of an elastic modulus in microstretch generalized thermoelasticity vol.30, pp.5, 2008, https://doi.org/10.12989/sem.2008.30.5.577