DOI QR코드

DOI QR Code

Applications of fiber optic sensors in civil engineering

  • Deng, Lu (Department of Civil and Environmental Engineering, Louisianan State University) ;
  • Cai, C.S. (Department of Civil and Environmental Engineering, Louisianan State University)
  • Received : 2006.01.10
  • Accepted : 2006.09.11
  • Published : 2007.03.30

Abstract

Recent development of fiber optic sensor technology has provided an excellent choice for civil engineers for performance monitoring of civil infrastructures. Fiber optic sensors have the advantages of small dimensions, good resolution and accuracy, as well as excellent ability to transmit signal at long distances. They are also immune to electromagnetic and radio frequency interference and may incorporate a series of interrogated sensors multiplexed along a single fiber. These advantages make fiber optic sensors a better method than traditional damage detection methods and devices to some extent. This paper provides a review of recent developments in fiber optic sensor technology as well as some applications of fiber optic sensors to the performance monitoring of civil infrastructures such as buildings, bridges, pavements, dams, pipelines, tunnels, piles, etc. Existing problems of fiber optic sensors with their applications to civil structural performance monitoring are also discussed.

Keywords

References

  1. Ansari, F. and Yuan, L. (1998), 'Mechanics of bond and interface shear transfer in optical fiber sensors', J. Eng. Mech., 124(4), 385-394 https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(385)
  2. Ansari, F. and Navalurkar, R.K. (1993), 'Kinematics of crack formation in cementitious composites by fiber optics', J. Eng. Mech., 119(5), 1048-1061 https://doi.org/10.1061/(ASCE)0733-9399(1993)119:5(1048)
  3. Bastianini, F., Corradi, M., Borri, A. and TOmmaso, A.D. (2005), 'Retrofit and monitoring of an historical building using 'smart' CFRP with embedded fibre optic Brillouin sensors', Constr. Building Mater., 19(7), 525-535 https://doi.org/10.1016/j.conbuildmat.2005.01.004
  4. Bergmeister, K. and Santa, U. (2001), 'Global monitoring concepts for bridges', Struct. Concr. J. FIB, 2(1), 29-39 https://doi.org/10.1680/stco.2.1.29.40863
  5. Body, J., Teral, S., Caussignac, J.M. and Siffert, M. (1993), 'Vehicle weighing in motion with fiber optic sensors', Measurement Control, 26(2), 45-47 https://doi.org/10.1177/002029409302600202
  6. Bonfiglioli, B. and Pascale, G. (2003), 'Internal strain measurements in concrete elements by fiber optic sensors', J. Mater. Civil Eng, 15(2), 125-133 https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(125)
  7. Casas, J.R. and Cruz, P.J.S. (2003), 'Fiber optic sensors for bridge monitoring', J. Bridge Eng, 8(6), 362-373 https://doi.org/10.1061/(ASCE)1084-0702(2003)8:6(362)
  8. Casas, J.R. and Frangopol, D.M. (2001), 'Monitoring and reliability management of deteriorating concrete bridges', Proc. 2nd Int. Workshop on Life-cycle Cost Analysis and Design of Civil Infrastructure Systems, A. Miyamoto and D.M. Frangopol, eds., Yamaguchi Univ., Ube, Japan, September, 127-141
  9. Cosentino, P.J., Eckroth, W.V. and Grossman, B.G. (2003), 'Analysis of fiber optic traffic sensors in flexible pavements', J. Transportation Eng, 129(5), 549-557 https://doi.org/10.1061/(ASCE)0733-947X(2003)129:5(549)
  10. Eckroth, W.V. (1999), 'Development and modeling of embedded fiber-optic traffic sensors', PhD Dissertation, Florida Institute of Technology, Melbourne, Fla
  11. Fernandez, M.L., Tapanes, E.E. and Zelitskaya, P.V. (1996), 'Pipeline hydrocarbon transportation: Some operating concerns and RD trends', Proc. 1st Int. Pipeline Conf., ASME OMAE, 1,95-102
  12. Fuhr, P.L. and Huston, D. (1993), 'Multiplexed fiber optic pressure and vibration sensors for hydroelectric dam monitoring', Smart Mater. Struct., 2, 260-263 https://doi.org/10.1088/0964-1726/2/4/008
  13. Fuhr, P.L., Huston, D.R., Ambrose, T.P. and Barker, D.A (1994), 'Embedded sensor results from the Winooski One hydroelectric dam', Proc. Smart Structures and Materials, SPIE, Bellingham, WA, 2191, 446-456
  14. Fuhr, P.L., Ambrose, T.P., Huston, D.R. and Mcpadden, A.P. (1995), 'Fiber optic corrosion sensing for bridges and roadway surfaces', Proc. Smart Structures and Materials 1995: Smart Systems for Bridges, Structures, and highways, SPIE, Bellingham, WA, 2446, 2-8
  15. Fuhr, P.L., Huston, D.K., Kajenski, P.J. and Ambrose, T.(1992), 'Performance and health monitoring of the Stafford Medical Building using embedded sensors', Smart Mater. Struct., 1,63-68 https://doi.org/10.1088/0964-1726/1/1/009
  16. Fuhr, P.L. and Huston, D.R. (1998), 'Corrosion detection in reinforced concrete roadways and bridges via embedded fiber optic sensor', Smart Mater. Struct., 7, 217-228 https://doi.org/10.1088/0964-1726/7/2/009
  17. Gheorghiu, G, Labossiere, P. and Proulx, J. (2005), 'Fiber optic sensors for strain measurement of CFRP-strengthened RC beams', Structural Health Monitoring, 4(1), 67-80 https://doi.org/10.1177/1475921705049754
  18. Glisic, B., Inaudi, D. and Nan, C. (2002), 'Pile monitoring with fiber optic sensors during axial compression, pullout, and flexure tests', Transportation Research Record, 1808, 11-20 https://doi.org/10.3141/1808-02
  19. Grossman, B.G, Cosentino, P.J., Kalajian, E.H., Kumar, G, Doi, S., Verghese, J. and Lai, P. (1994), 'Fiber optic pore pressure sensor development', Transportation Research Record 1432, Transportation Research Board, Washington, D.C., 76-85
  20. Grossmann, B.G and Huang, L. (1998), 'Fiber optic sensor array for multi-dimensional strain measurement', Smart Mater. Struct., 7, 159-165 https://doi.org/10.1088/0964-1726/7/2/003
  21. Habel, W.R. (1995), 'Fiber optic sensor in civil engineering: Experiences and Requirements', Proc. Smart Structures: Optical Instrumentation and Sensing Systems, SPIE, Bellingham, WA, 2509, 12-19
  22. Habel, W.R. and Hofmann, D. (1994), 'Determination of structural parameters concerning load capacity based on Fiber-Fabry-Perot-Interferometers', Proc. SPIE, 2361, 176-179
  23. Holl, M.W and Boyd, S. (1993), 'Effect of embedded fiber optics on the mechanical properties of a composite host material', Proc. Smart Structures and Materials 1993: Smart Materials, SPIE, Bellingham, WA, 1916, 109-117
  24. Idriss, R.L., Kodindouma, M.8., Kersey, A.D. and Davis, M.(1998), 'Multiplexed Bragg grating optical fiber sensors for damage evaluation in highway bridges', Smart Mater. Struct., 7, 209-216 https://doi.org/10.1088/0964-1726/7/2/008
  25. Inaudi, D. (2001), 'Application of fiber optical sensor in civil structural monitoring', Proc. Smart Structures and Materials: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, SPIE, Bellingham, WA, 4328, 1-10
  26. Inaudi, D., Rufenacht, A, Von Arx, B., Noher, H.P., Vurpillot, S. and Glisic, B. (2002), 'Monitoring of a concrete arch bridge during construction', Proc. Smart Structures and Materials 2002: Smart Systems for Bridges, Structures, and Highways SPIE, 4696, 89-103
  27. Inaudi, D., Del Grosso, A. and Lanata, F. (2001), 'Analysis of long-term deformation data from the San Giorgio Harbor pier in Genoa', Proc. Health Monitoring and Management of Civil Infrastructure Systems SFIE, Bellingham, WA, 4337, 459-465
  28. Iwaki, H., Yamakawa, H. and Mita, A. (2001), 'Health monitoring system using FBG-based sensors for a 12-story building with column dampers', Proc. Smart Structures and Materials: Smart Systems for Bridges, Structures, and Highways, SPIE, Bellingham, WA, 4330, 471-477
  29. Kenel, A., Nellen, P., Frank, A. and Marti, P. (2005), 'Reinforcing steel strains measured by Bragg grating sensors', J. Mater. Civil Eng., ASCE, 17(4), 423-431 https://doi.org/10.1061/(ASCE)0899-1561(2005)17:4(423)
  30. Kuang, K.S.C. and Cantwell, W.J. (2003), 'Use of conventional optical fibers and fiber Bragg gratings for damage detection in advanced composite structures: A review', Applied Mech. Reviews, 56(5),493-513 https://doi.org/10.1115/1.1582883
  31. Lee, D.C., Lee, J.J. and Kwon, I.B. (2000), 'Monitoring of fatigue crack growth in steel structures using intensity-based optical fiber sensors', J. Intell. Mater. Syst. Struct., 11, 100-107 https://doi.org/10.1177/104538900772664297
  32. Lee, W., Lee, W.J., Lee, S.B. and Salgado, R. (2004), 'Measurement of pile load transfer using the fiber bragg grating sensor system', Canadian Geotech. J., 41(6), 1222-1232 https://doi.org/10.1139/t04-059
  33. Leung, C.K.Y., Elvin, N., Olson, N., Morse, T.F. and He, Y.F. (2000), 'A novel distributed optical crack sensor for concrete structures', Eng. Fracture Mech., 65, 133-148 https://doi.org/10.1016/S0013-7944(99)00112-5
  34. Li, Q., Li, G, Wang, G, Ansari, F. and Liu, Q. (2002), 'Elasto-Plastic bonding of embedded optical fiber sensors in concrete', J. Eng. Mech., 128,471-478 https://doi.org/10.1061/(ASCE)0733-9399(2002)128:4(471)
  35. Li, H., Li, D. and Song, G. (2004), 'Recent applications of fiber optic sensors to health monitoring in civil engineering', Eng. Struct., 26,1647-1657 https://doi.org/10.1016/j.engstruct.2004.05.018
  36. Liu, H. and Yang, Z. (1998), 'Distributed optical fiber sensing of cracks in concrete', Proc. Optical and Fiber Optic Sensor Systems, SPIE, Bellingham, WA, 3555, 291-299
  37. Maalej, M., Ahmed, S.F.U., Kuang, K.S.C. and Paramasivam, P. (2004), 'Fiber optic sensing for monitoring corrosion-induced damage', Structural Health Monitoring, 3(2),165-176 https://doi.org/10.1177/1475921704042679
  38. Mall, S., Dosedel, S.B. and Holl, M.W (1996), 'The performance of graphite-epoxy composite with embedded optical fibers under compression', Smart Mater. Struct., 5, 209-215 https://doi.org/10.1088/0964-1726/5/2/009
  39. Merzbacher, C.I., Kersey, A.D. and Friebele, E.J. (1996), 'Fiber optic sensor in concrete structures: A review', Smart Mater. Struct., 5, 196-208 https://doi.org/10.1088/0964-1726/5/2/008
  40. Nellen, P.M., Frank, A., Bronnimann, R. and Sennhauser, U. (2000), 'Optical fiber Bragg gratings for tunnel surveillance', Proc. SPIE, 3986, 263-270
  41. Ou, J.P., Zhao, X.F., Li, H., Zhou, Z., Zhang, Z. and Wang, C. (2005), 'Health monitoring of Binzhou yellow river highway bridge using fiber Bragg gratings', Proc. Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, SPIE, Bellingham, WA, 5765, 576-583
  42. Roberts, S.S. and Davidson, R (1991), 'Mechanical properties of composite materials containing embedded fiber optic sensors', Proc. Fiber Optic Smart Structures and Skins, SPIE, Bellingham, WA, 1588, 326-341
  43. Tennyson, R.C., Mufti, A.A., Rizkalla, S., Tadros, G. and Benmokrane, B. (2001), 'Structural health monitoring of innovative bridges in Canada with fiber optic sensors', Smart Mater. Struct., 10, 560-573 https://doi.org/10.1088/0964-1726/10/3/320
  44. Tennyson, R.C., Morison, W.D. and Manuelipillai, G. (2003), 'Intelligent pipelines using fiber optic sensors', Proc. Smart Structures and Materials: Smart Sensor Technology and Measurement System, SPIE, Bellingham, WA, 5050, 295-304
  45. Tennyson, R.C., Coroy, T., Duck, G., Manuelpillai, G, Mulvihill, P., Cooper, David J.F., Smith, P.W.E., Mufti, A.A. and Jalali, S.J. (2000), 'Fiber optic sensors in civil engineering structures', Canadian J. Civil Eng., 27(5), 880-889 https://doi.org/10.1139/cjce-27-5-880
  46. Tennyson, R.C. (2001), 'Installation, use and repair of fiber optic sensors', Design Manuals (CD-Rom), No.1, ISIS-Canada, Winnipeg, Man., Canada
  47. Udd, E., Kunzler, M., Laylor, M., Schulz, W, Kreger, S., Corones, J., McMahon, R., Soltesz, S. and Edgar, R. (2001), 'Fiber grating systems for traffic monitoring', Proc. Health Monitoring and Management of Civil Infrastructure Systems. SPIE, Bellingham, WA, 4337, 510-516
  48. Wang, C., Zhou, Z., Hu, Q.L. and Ou, J.P. (2005), 'Construction control of mass concrete of Nanjing 3rd Yangtze Bridge using FRP-packaged FBG sensors', Proc. 17th Int. Conf. on Optical Fiber Sensors, SPIE, Bellingham, WA, 5855, 1012-1015
  49. Wanser, K.H. and Voss, K.H. (1994), 'Crack detection using multimode fiber optical time domain reflectometty', Proc. Distributed and Multiplexed Fiber Optic Sensors, SPIE, Bellingham, WA, 2294, 43-52
  50. Whelan, M.P., Albrecht, D. and Capsoni, A. (2002), 'Remote structural monitoring of the cathedral of Como using an optical fiber Bragg sensor system', Proc. Smart Structures and Materials and Non-destructive Evaluation for Health Monitoring and Diagnostics, SPIE, Bellingham, WA, 4330, 471-477
  51. Wolff, R. and Miesseler, H.J. (1992), 'Monitoring of prestressed concrete structures with optic fiber sensors', Proc. 1st Eur. Conf. on Smart Structures and Materials, Glasgow, 23-29

Cited by

  1. Characterisation of subsurface spatial variability using a cone resistivity penetrometer vol.31, pp.7, 2011, https://doi.org/10.1016/j.soildyn.2011.03.012
  2. Scour effect on a single pile and development of corresponding scour monitoring methods vol.22, pp.5, 2013, https://doi.org/10.1088/0964-1726/22/5/055011
  3. Bridge Scour: Prediction, Modeling, Monitoring, and Countermeasures—Review vol.15, pp.2, 2010, https://doi.org/10.1061/(ASCE)SC.1943-5576.0000041
  4. Characterization of Early Age Curing and Shrinkage of Metakaolin-Based Inorganic Binders with Different Rheological Behavior by Fiber Bragg Grating Sensors vol.11, pp.1, 2018, https://doi.org/10.3390/ma11010010
  5. Measurement of Maximum Strain of Steel Beam Structures Based on Average Strains from Vibrating Wire Strain Gages vol.37, pp.2, 2013, https://doi.org/10.1111/j.1747-1567.2011.00733.x
  6. Fiber optic based monitoring system applied to a centenary metallic arch bridge: Design and installation vol.44, 2012, https://doi.org/10.1016/j.engstruct.2012.06.005
  7. A wireless vibrating wire sensor node for continuous structural health monitoring vol.19, pp.5, 2010, https://doi.org/10.1088/0964-1726/19/5/055004
  8. Gage-Free Stress Estimation of a Beam-like Structure Based on Terrestrial Laser Scanning vol.26, pp.8, 2011, https://doi.org/10.1111/j.1467-8667.2011.00723.x
  9. Development of Fiber Optic Acoustic Emission Sensors for Applications in Civil Infrastructures vol.15, pp.8, 2012, https://doi.org/10.1260/1369-4332.15.8.1471
  10. A Practical Monitoring System for the Structural Safety of Mega-Trusses Using Wireless Vibrating Wire Strain Gauges vol.13, pp.12, 2013, https://doi.org/10.3390/s131217346
  11. Field Application of an Innovative Bridge Scour Monitoring System with Fiber Bragg Grating Sensors vol.30, pp.2, 2017, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000654
  12. An Embedded Stress Sensor for Concrete SHM Based on Amorphous Ferromagnetic Microwires vol.14, pp.12, 2014, https://doi.org/10.3390/s141119963
  13. Rotational Angle Measurement of Bridge Support Using Image Processing Techniques vol.2016, 2016, https://doi.org/10.1155/2016/1923934
  14. Instrumentation design for bridge scour monitoring using fiber Bragg grating sensors vol.51, pp.5, 2012, https://doi.org/10.1364/AO.51.000547
  15. Effectiveness of FWD to Simulate Traffic Loading in Recycled Pavements vol.30, pp.1, 2016, https://doi.org/10.1061/(ASCE)CF.1943-5509.0000708
  16. Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm vol.64, 2016, https://doi.org/10.1016/j.rser.2016.05.085
  17. Structural monitoring using fiber optic sensors of a pre-stressed concrete viaduct during construction phases vol.2, 2014, https://doi.org/10.1016/j.csndt.2014.06.002
  18. Fiber optic sensors for assessing strains in cold in-place recycled pavements vol.14, pp.2, 2013, https://doi.org/10.1080/10298436.2011.614691
  19. Investigatingin situstress-dependent behaviour of foamed asphalt-treated pavement materials vol.13, pp.4, 2012, https://doi.org/10.1080/14680629.2012.742628
  20. Efficient measurement of temperature, humidity and strain variation by modeling reflection Bragg grating spectrum in WSN vol.135, 2017, https://doi.org/10.1016/j.ijleo.2017.01.061
  21. Mechanical behaviors of SD and CFA piles using BOTDA-based fiber optic sensor system: A comparative field test study vol.104, 2017, https://doi.org/10.1016/j.measurement.2017.03.038
  22. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review vol.2014, 2014, https://doi.org/10.1155/2014/652329
  23. SHM and evaluation of a continuous reinforced concrete pavement vol.6, pp.4, 2016, https://doi.org/10.1007/s13349-016-0189-0
  24. Fiber Bragg grating sensing system using a TO-can–based compact optical module for wavelength demodulation vol.54, pp.12, 2015, https://doi.org/10.1117/1.OE.54.12.127106
  25. An enhanced distributed acoustic sensing system based on the interactions between microstructures vol.1065, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/1065/25/252011
  26. Strain Monitoring on PHC Pipe Piles Based on Fiber Bragg Grating Sensors vol.33, pp.2, 2019, https://doi.org/10.1061/(ASCE)CF.1943-5509.0001266
  27. Distributed fiber optics sensors for civil engineering infrastructure sensing vol.3, pp.1, 2007, https://doi.org/10.1080/24705314.2018.1426138
  28. Feasibility Study on Structural Health Monitoring Systems Using Fiber-Optic Sensors (FOS) Technology for Transportation Infrastructures in Indonesia vol.494, pp.None, 2007, https://doi.org/10.1088/1757-899x/494/1/012054
  29. Quantitative assessment of the concrete gravity dam damage under earthquake excitation using electro-mechanical impedance measurements vol.191, pp.None, 2007, https://doi.org/10.1016/j.engstruct.2019.04.061
  30. Early Crack Detection of Reinforced Concrete Structure Using Embedded Sensors vol.19, pp.18, 2019, https://doi.org/10.3390/s19183879
  31. Multi-Cross-Reference Method for Highway-Bridge Damage Identification Based on Long-Gauge Fiber Bragg-Grating Sensors vol.25, pp.6, 2007, https://doi.org/10.1061/(asce)be.1943-5592.0001542
  32. Strain Response Characteristics of RC Beams Strengthened with CFRP Sheet Using BOTDR vol.10, pp.17, 2007, https://doi.org/10.3390/app10176005
  33. Laboratory Investigation of Fiber Bragg Grating Strain Sensors for Semirigid Base Asphalt Pavements vol.2021, pp.None, 2007, https://doi.org/10.1155/2021/2235241
  34. Validation of Fresnel-Kirchhoff Integral Method for the Study of Volume Dielectric Bodies vol.11, pp.9, 2007, https://doi.org/10.3390/app11093800
  35. Sol-Gel Coating Membranes for Optical Fiber Sensors for Concrete Structures Monitoring vol.11, pp.10, 2007, https://doi.org/10.3390/coatings11101245