DOI QR코드

DOI QR Code

An endochronic model of material function and its application to plastic behavior of metals under asymmetric cyclic loadings

  • Yeh, Wei-Ching (Department of Mechanical Engineering, National Central University) ;
  • Lin, Hsi-Yen (Patent Division III, Intellectual Property Office, Ministry of Economic Affairs) ;
  • Jhaot, Jhen-Bo (Department of Mechanical Engineering, National Central University)
  • 투고 : 2005.08.22
  • 심사 : 2006.09.07
  • 발행 : 2007.03.10

초록

By using the incremental form of the endochronic theory of plasticity, a model of material function is proposed in this paper to investigate plastic behavior. By comparing the stress-strain hysteresis loop, the theory is shown to agree well with the experimental results, especially in the evolution of peak stress values of SAE 4340 steel loaded by cyclic loading with various amplitudes. Depending on the choice of material parameters, the present model can substantially result in six categories of material function, each of which can behave differently with respect to an identical deformation history. In addition, the present model of material function is shown to be capable of describing the behavior of erasure of memory of materials, as experimentally observed by Lamba and Sidebottom (1978).

키워드

참고문헌

  1. Basuroychowdhury, I.N. and Voyiadjis, G.Z. (1998), 'A multiaxial cyclic plasticity model for nonproportional loading cases', Int. J. Plasticity, 14, 855-870 https://doi.org/10.1016/S0749-6419(98)00033-3
  2. Beaudoin, A.J., Dawson, P.R., Mathur, K.K., Kocks, U.F. and Korzekwa, D.A. (1991), 'Application of polycrystalline plasticity to sheet forming', Comp. Math. Appl. Mech. Eng., 117, 49-70
  3. Cailletaud, G. (1984), 'Some elements on multiaxial behavior of 316L stainless steel at room temperature', Mech. Mater, 3, 333-345 https://doi.org/10.1016/0167-6636(84)90033-4
  4. Calloch, S. and Marquis, D. (1997), 'Additional hardening due to tension-torsion nonproportional loadings: influence of the loading shape; multiaxial fatigue and deformation testing techniques', In: Kalluri, S., Bonacuse, P.J.(Eds.) ASTM STP 1280. American Society for Testing and Materials, 113-130
  5. Chang, K.C. and Lee, G.C. (1986), 'Biaxial properties of structural steel under nonproportional loading', J. Eng. Mech., 112, 792-805 https://doi.org/10.1061/(ASCE)0733-9399(1986)112:8(792)
  6. Dafalias,Y.F. and Aifantis, E.C. (1990), 'On the microscopic origin of the plastic spin', Acta Mech., 82, 31-48 https://doi.org/10.1007/BF01173738
  7. Dafalias, Y.F. and Popov, E.P. (1976), 'Plastic internal variables formalism of plasticity', J. Appl. Mech., 43, 645-651 https://doi.org/10.1115/1.3423948
  8. Diard, O., Leclercq, S., Rousselier, G and Cailletaud, G. (2005), 'Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity: Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries', Int. J. Plasticity, 21, 691-722 https://doi.org/10.1016/j.ijplas.2004.05.017
  9. Ellyin, F. and Wolodko, J.D. (1997), 'Testing facilities for multiaxial loading of tubular specimens, multiaxial fatigue and deformation testing techniques', ASTM STP 1280, S. Kalluri and P.J. Bonacuse, Eds., ASTM, 724
  10. Hopperstad, O.S., Langseth, M. and Remseth, S. (1995a), 'Cyclic stress-strain behaviour of alloy AA6060 T4, Part I: Biaxial experiments and modeling', Int. J. Plasticity, 11, 725-739 https://doi.org/10.1016/S0749-6419(95)00032-1
  11. Hopperstad, O.S., Langseth, M. and Remseth, S. (1995b), 'Cyclic stress-strain behaviour of alloy AA6060 T4, Part II: Biaxial experiments and modeling', Int. J. Plasticity, 11, 741-762 https://doi.org/10.1016/S0749-6419(95)00033-X
  12. Krempl, E. and Lu, H. (1984), 'The hardening and rate dependent behavior of fully annealed AISI type 304 stainless steel under biaxial in-phase and out-of-phase strain cycling at room temperature', J. Eng. Mater. Technol., 106, 376-384 https://doi.org/10.1115/1.3225733
  13. Krieg, R.D. (1975), 'A practical two surface plasticity theory', J. Appl. Mech., 42, 641-646 https://doi.org/10.1115/1.3423656
  14. Kwofie, S. (2003), 'Description of cyclic hysteresis behavior based on one-parameter model', Maters. Sci. Eng., A357, 86-93
  15. Lamba, H.S. and Siderbottom, O.M. (1978), 'Cyclic plasticity for nonproportional path: Part 1: Cyclic hardening, erasure of memory, and subsequent strain hardening experiments', J. Eng. Mater. Technol, 100, 96-103 https://doi.org/10.1115/1.3443456
  16. Miehe, C., Schotte, J. and Schroder, J. (1999), 'Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains', Comput. Mat. Sci., 16, 372-382 https://doi.org/10.1016/S0927-0256(99)00080-4
  17. Mroz, Z. (1967), 'On the description of anisotropic workhardening', J. Mech. Phys. Solids, 15, 163-175 https://doi.org/10.1016/0022-5096(67)90030-0
  18. Murakami, H. and Read, H.E. (1989), 'A second-order numerical scheme for integrating the endochronic plasticity equations', Comput. Struct., 31, 663-672 https://doi.org/10.1016/0045-7949(89)90200-9
  19. Ning, J. and Aifantis, E.C. (1996), 'Anisotropic yield and plastic flow of polycrystalline solids', Int. J. Plasticity, 12, 1221-1240 https://doi.org/10.1016/S0749-6419(98)80003-X
  20. Pan, W.F. and Chern, C.H. (1997), 'Endochronic description for viscoplastic behavior of materials under multiaxial loading', Int. J. Solids Struct., 34, 2131-2160 https://doi.org/10.1016/S0020-7683(96)00118-7
  21. Pan, W.F. and Chiang, W.J. (1999), 'Endochronic analysis for rate-dependent elasto-plastic deformation', Int. J. Solids Struct., 36, 3215-3237 https://doi.org/10.1016/S0020-7683(98)00145-0
  22. Rivlin, R.S. (1981), 'Some comments on the endochronic theory of plasticity', Int. J. Solids Struct., 17, 231-248 https://doi.org/10.1016/0020-7683(81)90078-0
  23. Samson, Y., Hong S.G. and Lee, S.B. (2004), 'Phenomenological description of cyclic deformation using the overlay model', Mater. Sci. Eng., A364, 17-26
  24. Sandler, I.S. (1978), 'On the uniqueness and stability of endochronic theories of material behavior', J. Appl. Mech., 45, 263-266 https://doi.org/10.1115/1.3424285
  25. Shiao, Y.P. (2000), 'A study on multi axial cyclic loading and anisotropic plasticity of structural metals', Ph.D. Thesis, National Taiwan University, Dept. of C.E
  26. Tanaka, E., Murakami, S. and Ooka, M. (1985a), 'Effects of strain path shapes on non-proportional cyclic plasticity', J. Mech. Phys. Solids, 33(6), 559-575 https://doi.org/10.1016/0022-5096(85)90003-1
  27. Tanaka, E., Murakami, S. and Ooka, M. (1985b), 'Effects of plastic strain amplitudes on non-proportional cyclic plasticity', Acta Mech., 57, 167-192 https://doi.org/10.1007/BF01176916
  28. Valanis, K.C. (1971), 'A theory of viscoplasticity without a yield surface, Part I: General theory', Arch. Mech., 23, 517-551
  29. Valanis, K.C. (1980), 'Fundamental consequence of a new intrinsic time measure-plasticity as a limit of the endochronic theory', Arch. Mech., 32, 171-191
  30. Valanis, K.C. and Fan, J. (1983), 'Endochronic analysis of cyclic elastoplastic strain fields in a notch plate', J. Appl. Mech., ASME, 50, 789-794 https://doi.org/10.1115/1.3167147
  31. Valanis, K.C. (1984), 'Continuum foundations of endochronic plasticity', J. Eng. Mater. Technol., 106, 367-375 https://doi.org/10.1115/1.3225732
  32. Watanabe, O. and Atluri, S.N. (1986), 'Constitutive modeling of cyclic plasticity and creep, using an internal time concept', Int. J. Plasticity, 2, 107-134 https://doi.org/10.1016/0749-6419(86)90008-2
  33. Wu, H.C., Yao, J.C. and Chu, S.C. (1986), 'Investigation of endochronic constitutive equation subject to plastic strain-controlled axial-torsional deformation', J. Eng. Mater. Technol, 108, 262-269 https://doi.org/10.1115/1.3225879
  34. Wu, H.C. and Yip, M.C. (1981), 'Endochronic description of cyclic hardening behavior of metallic material', J. Eng. Mater. Technol, 103, 212-217 https://doi.org/10.1115/1.3225003
  35. Yeh, W.C. (1995), 'Verification of the endochronic theory of plasticity under biaxial load', J. the Chinese Institute of Engineers, 18(1), 25-34 https://doi.org/10.1080/02533839.1995.9677663
  36. Yeh, W.C., Cheng, J.Y. and Her, R.S. (1994), 'Analysis of plastic behavior to cyclically uniaxial tests using an endochronic approach', J. Eng. Mater. Technol, ASME, 116, 62-67 https://doi.org/10.1115/1.2904256
  37. Yeh, W.C., Ho, C.D. and Pan, W.F. (1996), 'An endochronic theory accounting for deformation induced anisotropy', Int. J. Plasticity, 12, 987-1004 https://doi.org/10.1016/S0749-6419(96)00038-1