References
- Allman, D.J. (1984), 'A compatible triangular element including vertex rotations for plane elasticity problems', Comput. Struct., 19, 1-8 https://doi.org/10.1016/0045-7949(84)90197-4
- ANSYS. (1997), Swanson Analysis Systems, Swanson J. ANSYS 5.4. USA
- Ayad, R., and Rigolot, A. (2002), 'An improved four-node hybrid-mixed element based upon Mindlin's plate theory', Int. J. Numer. Meth. Eng, 55(6), 705-731 https://doi.org/10.1002/nme.528
- Bergan, P.G and Felippa, C.A. (1985), 'A triangular membrane element with rotational degrees of freedom', Comput. Meth. Appl. Mech. Eng, 50, 25-69 https://doi.org/10.1016/0045-7825(85)90113-6
- Choi, C.K. and Lee, W.H. (1996), 'Versatile variable-node flat-shell element', J. Eng Mech., 122(5), 432-441 https://doi.org/10.1061/(ASCE)0733-9399(1996)122:5(432)
- Cook, R.D. (1986), 'On the Allman triangle and a related quadrilateral element', Comput. Struct., 22, 1065-1067 https://doi.org/10.1016/0045-7949(86)90167-7
- Ibrahimbegovic, A., Taylor, R.L. and Wison, E.L. (1990), 'A robust quadrilateral membrane finite element with drilling degrees of freedom', Int. J. Numer. Meth. Eng, 30, 445-457 https://doi.org/10.1002/nme.1620300305
- Danlmaz, K. (2005), 'An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates', Struct. Eng Mech., 19(2), 199-215 https://doi.org/10.12989/sem.2005.19.2.199
- Danlmaz, K. (2005), 'A hybrid 8-node hexahedral element for static and free vibration analysis', Struct. Eng Mech., 21(5), 571-590 https://doi.org/10.12989/sem.2005.21.5.571
- Duan, M. and Miyamoto, Y. (2002), 'Effective hybrid/mixed finite elements for folded-plate structures', J. Eng Mech., ASCE, 128(2), 202-208 https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(202)
- Eratli, N. and Akoz, A.Y. (2002), 'Mixed finite element formulation for folded plates', Struct. Eng Mech., 13(2), 155-170 https://doi.org/10.12989/sem.2002.13.2.155
- Feng, W, Hoa, S.V. and Huang, Q. (1997), 'Classification of stress modes in assumed stress fields of hybrid finite elements', Int. J. Numer. Meth. Eng., 40, 4313-4339 https://doi.org/10.1002/(SICI)1097-0207(19971215)40:23<4313::AID-NME259>3.0.CO;2-N
- Lee, S.Y. and Wooh, S.C. (2004) 'Finite element vibration analysis of composite box structures using the high order plate theory', J. Sound Vib .. 277(4-5), 801-814 https://doi.org/10.1016/j.jsv.2003.09.024
- Liu, W.H. and Huang, C.C. (1992), 'Vibration Analysis of folded plates', J. Sound Vib., 157, 123-137 https://doi.org/10.1016/0022-460X(92)90570-N
- MacNeal, R.H. and Harder, R.L. (1988), 'A refined four-noded membrane element with rotational degrees of freedom', Comput. Struct., 28, 75-84 https://doi.org/10.1016/0045-7949(88)90094-6
- Niyogi, A.G, Laha, M.K. and Sinha, P.K. (1999), 'Finite element vibration analysis of laminated composite folded plate structures', Shock and Vibration, 6, 273-283 https://doi.org/10.1155/1999/354234
- Perry, B., Bar- Yoseph, P. and Rosenhouse, G. (1992), 'Rectangular hybrid shell element for analysing folded plate structures', Comput. Struct., 44, 177-183 https://doi.org/10.1016/0045-7949(92)90236-S
- Pian, T.H.H. (1964), 'Derivation of element stiffness matrices by assumed stress distributions', AIAA J., 12, 1333-1336
- Pian, T.H.H. and Chen, D.P. (1983), 'On the suppression of zero energy deformation modes', Int. .J Numer. Meth. Eng., 19, 1741-1752 https://doi.org/10.1002/nme.1620191202
- Punch, E.F. and Atluri, S.N. (1984), 'Development and testing of stable, isoparametric curvilinear 2 and 3-D hybrid stress elements', Comput. Meth. Appl. Mech. Eng., 47, 331-356 https://doi.org/10.1016/0045-7825(84)90083-5
- Yunus, S.M., Saigal, S. and Cook, R.D. (1989), 'On improved hybrid finite elements with rotational degrees of freedom', Int. J. Numer. Meth. Eng, 28, 785-800 https://doi.org/10.1002/nme.1620280405
Cited by
- Influence of aspect ratio and fibre orientation on the stability of simply supported orthotropic skew plates vol.11, pp.5, 2007, https://doi.org/10.12989/scs.2011.11.5.359
- Static and free vibration behaviour of orthotropic elliptic paraboloid shells vol.23, pp.6, 2007, https://doi.org/10.12989/scs.2017.23.6.737
- Dynamic behaviour of orthotropic elliptic paraboloid shells with openings vol.63, pp.2, 2007, https://doi.org/10.12989/sem.2017.63.2.225
- Free Vibration Analysis of Moderately Thick Coupled Plates with Elastic Boundary Conditions and Point Supports vol.19, pp.12, 2019, https://doi.org/10.1142/s0219455419501505