References
- Adams, G.G. and Bogy, D.B. (1976), 'The plane solution for the elastic contact problem of a semi-infinite strip and half plane', J. Appl. Mech., 43, 603-607 https://doi.org/10.1115/1.3423940
- Artan, R. and Omurtag, M. (2000), 'Two plane punches on a nonlocal elastic half plane', Int. J. Engrg. Sci., 38, 395-403 https://doi.org/10.1016/S0020-7225(99)00053-1
- Birinci, A. and Erdol, R. (2001), 'Continuous and discontinuous contact problem for a layered composite resting on simple supports', Struet. Engrg. Mech., 12(1), 17-34
- Birinci, A. and Erdol, R. (2003), 'A frictionless contact problem for two elastic layers supported by a Winkler foundation', Struet. Engrg. Mech., 15(3), 331-344
- Cive1ek, M.B. and Erdogan, F. (1974), 'The axisymmetric double contact problem for a frictionless elastic layer', Int. J. Solids Struet., 10, 639-659 https://doi.org/10.1016/0020-7683(74)90048-1
- Cive1ek, M.B. and Erdogan, F. (1975), 'The frictionless contact problem for an elastic layer under gravity', J. Appl. Mech., 42(97), 136-140 https://doi.org/10.1115/1.3423504
- Civelek, M.B. and Erdogan, F. (1976), 'Interface separation in a frictionless contact problem for an elastic layer', J. Appl. Mech., 43(98), 175-177 https://doi.org/10.1115/1.3423775
- Civelek, M.B., Erdogan, F. and Cakiroglu, A.O. (1978), 'Interface separation for an elastic layer loaded by a rigid stamp', Int. J. Engrg. Sci., 16, 669-679 https://doi.org/10.1016/0020-7225(78)90044-7
- Comez, I., Birinci, A. and Erdol, R. (2004), 'Double receding contact problem for a rigid stamp and two elastic layers', European J Mech. A/Solids, 23, 301-309 https://doi.org/10.1016/j.euromechsol.2003.09.006
- Cakiroglu, A.O. and Cakiroglu, F.L. (1991), 'Continuous and discontinuous contact problems for strips on an elastic semi-infmite plane', Int. J. Engrg. Sci., 29(1), 99-111 https://doi.org/10.1016/0020-7225(91)90080-M
- Dhaliwal, R.S. (1970), 'Punch problem for an elastic layer overlying an elastic foundation', Int. J. Eng. Sci., 8, 273-288 https://doi.org/10.1016/0020-7225(70)90058-3
- Erdogan, F. and Gupta, G. (1972), 'On the numerical solutions of singular integral equations', Quart. J. Appl. Math., 29, 525-534 https://doi.org/10.1090/qam/408277
- Gecit, M.R. and Erdogan, F. (1978), 'Frictionless contact problem for an elastic layer under axisymmetric loading', Int. J. Solids Struet., 14, 771-785 https://doi.org/10.1016/0020-7683(78)90034-3
- Gecit, M.R. and Gokpmar, S. (1985), 'Frictionless contact between an elastic layer and a rigid rounded support', Arabian J. Sci. Eng, 10(3), 243-251
- Gecit, M.R. (1986), 'The axisymmetric double contact problem for a frictionless elastic layer indented by an elastic cylinder', Int. J. Eng Sci., 24(9), 1571-1584 https://doi.org/10.1016/0020-7225(86)90164-3
- Gladwell, G.M.L. (1976), 'On some unbonded contact problems in plane elasticity theory', J. Appl. Mech., 43, 263-267 https://doi.org/10.1115/1.3423821
- Keer, L.M., Dundurs, J. and Tsai, K.C. (1972), 'Problems involving a receding contact between a layer and a half space', J. Appl. Mech., 39, 1115-1120 https://doi.org/10.1115/1.3422839
- Klarbring, A., Mikelic, A. and Shillor, M. (1991), 'The rigid punch problem with friction', Int. J. Eng Sei., 29(6), 751-768 https://doi.org/10.1016/0020-7225(91)90104-B
- Lan, Q., Graham, G.A.C. and Selvadurai, A.P.S. (1996), 'Certain two punch problems for an elastic layer', Int. J. Solids Struet., 33(19), 2759-2774 https://doi.org/10.1016/0020-7683(95)00181-6
- Muskhelishvili, N.I. (1958), Singular Integral Equations. Noordhoff, Leyden, The Netherlands
- Jaffar, M.J. (1993), 'Determination of surface deformation of a bonded elastic layer indented by a rigid cylinder using the Chebyshev series method', 170, 291-294
- Jaffar, M.J. (2002), 'Frictionless contact between an elastic layer on a rigid base and a circular flat-ended punch with rounded edge or a conical punch with rounded tip', Int. J. Mech. Sci., 44, 545-560 https://doi.org/10.1016/S0020-7403(01)00104-7
- Porter, M.I. and Hills, D.A. (2002), 'Note on the complete contact between a flat rigid punch and an elastic layer attached to a dissimilar substrate', Int. J. Mech. Sci., 44, 509-520 https://doi.org/10.1016/S0020-7403(01)00106-0
- Shanahan, M.E.R. (2000), 'Adhesion of a punch to a thin membrane', C.R. Acad. Sci. Paris, Surfaces, Interfaces, Films, 1(4), 517-522
Cited by
- Contact Problem for an Elastic Layer on an Elastic Half Plane Loaded by Means of Three Rigid Flat Punches vol.2013, 2013, https://doi.org/10.1155/2013/137427
- Continuous contact problem for two elastic layers resting on an elastic half-infinite plane vol.9, pp.1, 2014, https://doi.org/10.2140/jomms.2014.9.105
- Analytical solution to continuous contact problem for a functionally graded layer loaded through two dissimilar rigid punches vol.53, pp.14, 2018, https://doi.org/10.1007/s11012-018-0902-7
- Using multiple point constraints in finite element analysis of two dimensional contact problems vol.36, pp.1, 2010, https://doi.org/10.12989/sem.2010.36.1.095
- Frictionless Contact Problem for a Functionally Graded Layer Loaded Through Two Rigid Punches Using Finite Element Method vol.35, pp.5, 2019, https://doi.org/10.1017/jmech.2018.55
- Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane vol.72, pp.6, 2007, https://doi.org/10.12989/sem.2019.72.6.775
- Continuous and discontinuous contact problems of a homogeneous piezoelectric layer pressed by a conducting rigid flat punch vol.231, pp.3, 2020, https://doi.org/10.1007/s00707-019-02551-3
- Examination of analytical and finite element solutions regarding contact of a functionally graded layer vol.76, pp.3, 2007, https://doi.org/10.12989/sem.2020.76.3.325
- Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM vol.27, pp.3, 2007, https://doi.org/10.12989/cac.2021.27.3.199
- Examination of contact problem between functionally graded punch and functionally graded layer resting on elastic plane vol.78, pp.2, 2021, https://doi.org/10.12989/sem.2021.78.2.135