DOI QR코드

DOI QR Code

Effects of element distortions on the performance of enriched quadrilateral elements

  • Ho, Shi-Pin (Department of Mechanical Engineering, National Cheng Kung University) ;
  • Yeh, Yen-Liang (Department of Mechanical Engineering, National Cheng Kung University)
  • Received : 2005.06.27
  • Accepted : 2006.07.18
  • Published : 2007.01.30

Abstract

Keywords

References

  1. Auricchio, E and Taylor, R.L. (1995), 'A triangular thick plate finite element with an exact thin limit', Finite Elements in Analysis and Design, 19, 57-68 https://doi.org/10.1016/0168-874X(94)00057-M
  2. Brezzi, E, Bristeau, M.O., Franca, L.P., Mallet, M. and Roge, G (1992), 'A relationship between stabilized finite element methods and the Galerkin method with bubble functions', Comput. Meth. Appl. Mech. Eng., 96(1), 117-129 https://doi.org/10.1016/0045-7825(92)90102-P
  3. Brezzi, E and Russo, A. (1994), 'Choosing bubbles for advection-diffusion problems', Mathematical Models and Meth. Appl. Sci., 4(4),571-587 https://doi.org/10.1142/S0218202594000327
  4. Brezzi, E, Hughes, T.J.R., Marini, L.D., Russo, A. and Stili, E. (1999), 'A priori error analysis of residual-free bubbles for advection-diffusion problems', SIAM J. Numer. Analysis, 36(6), 1933-1948 https://doi.org/10.1137/S0036142998342367
  5. Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2002), Concepts and Applications of Finite Element Analysis, John Wiley & Sons, New York, NY
  6. Farhat, C. and Sobh, N. (1989), 'A coarse/fine preconditioner for very ill-conditioned finite element problems', Int. J. Numer. Meth. Eng., 28(7), 1715-1723 https://doi.org/10.1002/nme.1620280717
  7. Franca, L.P. and Farhat, C. (1994), 'On the limitation of bubble functions', Comput. Meth. Appl. Mech. Eng., 117(2), 225-230 https://doi.org/10.1016/0045-7825(94)90085-X
  8. Franca, L.P. and Farhat, C. (1995), 'Bubble functions prompt unusual stabilized finite element methods', Comput. Meth. Appl. Mech. Eng., 123,299-308 https://doi.org/10.1016/0045-7825(94)00721-X
  9. Hong, W.I., Kim, Y.H. and Lee, S.W (2001), 'An assumed strain triangular solid shell element with bubble function displacements for analysis of plates and shells', Int. J. Numer. Meth. Eng., 52(4), 455-469 https://doi.org/10.1002/nme.226
  10. Lautersztajn, S.N. and Samuelsson, A. (2000), 'Further discussion on four-node isoparametric quadrilateral elements in plane bending', Int. J. Numer. Meth. Eng., 47(1), 129-140 https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<129::AID-NME764>3.0.CO;2-K
  11. Lee, N.S. and Bathe, K.J. (1993), 'Effects of element distortions on the performance of isoparametric elements', Int. J. Numer. Method. Eng., 36(20), 3553-3576 https://doi.org/10.1002/nme.1620362009
  12. Ooi, E.T., Rajendran, S. and Yeo, J.H. (2004), 'A 20-node hexahedron element with enhanced distortion tolerance', Int. J. Numer. Meth. Eng., 60(15), 2501-2530 https://doi.org/10.1002/nme.1056
  13. Rajendran, S. and Liew, K.M. (2003), 'A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field', Int. J. Numer. Meth. Eng., 58(11), 1713-1748 https://doi.org/10.1002/nme.836
  14. Sangalli, G. (2000), 'Global and local error analysis for the residual-free bubbles method applied to advectiondominated problems', SIAM J. Numer. Analysis, 38(5), 1496-1522 https://doi.org/10.1137/S0036142999365382
  15. Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method - Volume I Basic Formulation and Linear Problems, McGraw-Hill, London