References
- Bathe, KJ. (1982), Finite Element Procedures in Engineering Analysis. Englewood Cliffs. NJ: Prentice-Hall
- Bathe, KJ. and Wilson, E.L. (1973), 'Stability and accuracy analysis of direct integration methods', Earthq. Eng. Struct. Dyn., 1,283-291 https://doi.org/10.1002/eqe.4290010308
- Bert, C.W., Jang, S.K. and Striz, A.G (1987), 'Two new approximate methods for analyzing free vibration of structural components', AIAA J, 26(5), 612-618 https://doi.org/10.2514/3.9941
- Bert, C.W. and Malik, M. (1996), 'Differential quadrature method in computational mechanics: A review', Appl. Mech. Rev., 49(1), 1-28 https://doi.org/10.1115/1.3101882
- Bert, C.W. and Stricklin, J.D. (1988), 'Comparative evaluation of six different numerical methods for nonlinear dynamic systems', J Sound Vib., 127(2),221-229 https://doi.org/10.1016/0022-460X(88)90298-2
- Chopra, A.K. (1995), Dynamics of Structures, Theory and Applications to Earthquake Engineering. PrenticeHall, New Jersy
- Civalek, O. (2004), 'Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns', Eng. Struct., An Int. J, 26(2), 171-186 https://doi.org/10.1016/j.engstruct.2003.09.005
- Civalek, O. (2002), Diffrrential Quadrature (DQ) for Static and Dynamic Analysis of Structures (in Turkish), FIrat University
- Civalek, O. and Ulker, M. (2004a), 'Harmonic differential quadrature (HDQ) for axisymmetric bending analysis ofthin isotropic circular plates', Struct. Eng. Mech., 17(1), 1-14 https://doi.org/10.12989/sem.2004.17.1.001
- Civalek, O. and Ulker, M. (2004b), 'Free vibration analysis of elastic beams using harmonic differential quadrature (HDQ)', Math. and Comput. Appl., 9(2), 257-264
- Civalek, O. (2004b), 'Geometrically non-linear static and dynamic analysis of plates and shells resting on elastic foundation by the method of polynomial differential quadrature (PDQ)', PhD. Thesis, FIrat University, (in Turkish), ElazIg
- Civalek, O. (2003), 'Linear and nonlinear dynamic response of multi-degree-of freedom-systems by the method of harmonic differential quadrature (HDQ)', PhD. Thesis, Dokuz EylUl University, izmir
- Clough, R.W. and Penzien, J. (1975), Dynamics and Structures, McGraw-Hill, New York
- Du, H., Liew, K.M. and Lim, M.K. (1996), 'Generalized differential quadrature method for buckling analysis', J Eng. Mech., ASCE, 22(2), 95-100
- Dokainish, MA and Subbaraj, K. (1989), 'A survey of direct time-integration methods in computational structural dynamics-I, explicit methods', Comput. Struct., 32(6), 1371-1386 https://doi.org/10.1016/0045-7949(89)90314-3
- Dokainish, MA and Subbaraj, K. (1989), 'A survey of direct time-integration methods in computational structural dynamics-II, implicit methods', Comput. Struct., 32(6), 1387-1401 https://doi.org/10.1016/0045-7949(89)90315-5
- Fung, T.C. (1996), 'Unconditionally stable higher-order accurate Hermittian time finite elements', Int. J Numer. Meth. Eng., 39, 3475-3495 https://doi.org/10.1002/(SICI)1097-0207(19961030)39:20<3475::AID-NME10>3.0.CO;2-H
- Fung, TC. (1998), 'Higher order time step integration methods with complex time step', J Sound Vib., 210(1), 69-89 https://doi.org/10.1006/jsvi.1997.1300
- Fung, TC. (2001), 'Solving initial value problems by differential quadrature method-Part 1: First-order equations',Int. J Numer. Meth. Eng., 50, 1411-1427 https://doi.org/10.1002/1097-0207(20010228)50:6<1411::AID-NME78>3.0.CO;2-O
- Fung, TC. (2001a), 'Solving initial value problems by differential quadrature method-Part 2: Second-and higherorder- order equations', Int. J Numer. Meth. Eng., 50, 1429-1454 https://doi.org/10.1002/1097-0207(20010228)50:6<1429::AID-NME79>3.0.CO;2-A
- Fung, TC. (2002), 'Stability and accuracy of differential quadrature method in solving dynamic problems', Comput. Meth. Appl. Mech. Eng., 191, 1311-1331 https://doi.org/10.1016/S0045-7825(01)00324-3
- Fung, TC. (2002a), 'On the equivalence of the time domain differential quadrature method and dissipative Runge-Kutta collocation method', Int. J Numer. Meth. Eng., 53, 409-431 https://doi.org/10.1002/nme.283
- Fung, TC. (2003), 'Imposition of boundary conditions by modifYing the weighting coefficient matrices in the differential quadrature method', Int. J Numer. Meth. Eng., 56, 405-432 https://doi.org/10.1002/nme.571
- Fung, TC. (2003a), 'Generalized Lagrange functions and weighting coefficient formulae for the harmonic differential quadrature method', Int. J Numer. Meth. Eng., 57, 415-440 https://doi.org/10.1002/nme.692
- Houbolt, J.C. (1950), 'A recurrence matrix solution for the dynamic response of elastic aircraft', J of Aeronautical Sciences, 17, 540-550 https://doi.org/10.2514/8.1722
- Kutta, W. (1901), 'Beitrag Zur Naherungsweisen Integration Totaler Differentialgleichungen', Zeitschrifi fur Mathematik un Physik, 46, 435-453
- Liew, K.M. and Teo, TM. (1999), 'Three dimensional vibration analysis of rectangular plates based on differential quadrature method', J Sound Vib., 220(4), 577-599 https://doi.org/10.1006/jsvi.1998.1927
- Liew, K.M., Teo, TM. and Han, J.B. (1999a), 'Comparative accuracy of DQ and HDQ methods for threedimensional vibration analysis of rectangular plates', Int. J Numer. Meth. Eng., 45, 1831-1848 https://doi.org/10.1002/(SICI)1097-0207(19990830)45:12<1831::AID-NME656>3.0.CO;2-W
- Liew, K.M., Teo, TM. and Han, l-B. (2001), 'Three-dimensional static solutions of rectangular plates by variant differential quadrature method', Int. J Mech. Sci., 43, 1611-1628 https://doi.org/10.1016/S0020-7403(00)00098-9
- Liew, K.M., Huang, Y.Q. and Reddy, J.N. (2002), 'A hybrid moving least squares and differential quadrature (MLSDQ) meshfree method', Int. J Comput. Eng. Sic., 3(1), 1-12 https://doi.org/10.1142/S1465876302000526
- Liew, K.M. and Liu, F.-L. (1997), 'Differential cubature method: A solution technique for Kirchhoff plates of arbitrary shape', Comput. Meth. Appl. Mech. Eng., 145, 1-10 https://doi.org/10.1016/S0045-7825(96)01194-2
- Liew, K.M. and Han, J-B. (1997a), 'A four-node differential quadrature method for straight-sided quadrilateral Reissner/Mindlin plates', Comm. Numer. Meth. Eng., 13(2), 73-81 https://doi.org/10.1002/(SICI)1099-0887(199702)13:2<73::AID-CNM32>3.0.CO;2-W
- Liew, K.M., Han, J-B, Xiao, Z.M. and Du, H. (1996), 'Differentiel quadrature method for mindlin plates on winkler foundations', Int. J Mech. Sci., 38(4), 405-421 https://doi.org/10.1016/0020-7403(95)00062-3
- Liew, K.M. and Teo, TM. (1998), 'Modeling via differential quadrature method: Three-dimensional solutions for rectangular plates', Camp. Meth. in Appl. Mech. Eng., 159, 369-381 https://doi.org/10.1016/S0045-7825(97)00279-X
- Newmark, N.M. (1959), 'A method of computation for structural dynamics', J Eng. Mech. Div., ASCE, 85, 67-94
- Runge, e. (1895), 'Uber die numerische Auflosung von Differentialgleichungen', Mathematische Annalen, 46, 167-178 https://doi.org/10.1007/BF01446807
- Senjanovic, I. (1984), 'Harmonic accelaration method for dynamic structural analysis', Comput. Struct., 18(1), 71-80 https://doi.org/10.1016/0045-7949(84)90083-X
- Shu, C. and Xue, H. (1997), 'Explicit computations of weighting coefficients in the harmonic differential quadrature', J Sound Vib., 204(3), 549-555 https://doi.org/10.1006/jsvi.1996.0894
- Shu, C., Yao, Q. and Yeo, K.S. (2002), 'Block-marching in time with DQ discretization: An efficient method for time-dependent problems', Comput. Meth. Appl. Mech. Eng., 191,4587-4597 https://doi.org/10.1016/S0045-7825(02)00387-0
- Striz, A.G, Wang, X. and Bert, C.W (1995), 'Harmonic differential quadrature method and applications to analysis of structural components', Acta Mechanica, 111, 85-94 https://doi.org/10.1007/BF01187729
- Sun, K., Pires, J.A and Tao, J.R. (1991), 'A post-correction integration algorithm for non-linear dynamic analysis of structures', Earth. Eng. Struct. Dyn., 20, 1083-1097 https://doi.org/10.1002/eqe.4290201108
- Tanaka, M. and Chen, W (2001), 'Dual reciprocity BEM applied to transient elastodynamics problems with differenential quadrature method in time', Comput. Meth. Appl. Mech. Eng., 190,2331-2347 https://doi.org/10.1016/S0045-7825(00)00237-1
- Tanaka, M. and Chen, W (2001a), 'Coupling dual reciprocity BEM and differential qudrature method for timedependent diffusion problems', Appl. Mathematical Modeling, 25(3), 257-268 https://doi.org/10.1016/S0307-904X(00)00052-4
- Wang, X. and Bert, C.W (1993), 'A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates', J Sound Vib., 162, 566-572 https://doi.org/10.1006/jsvi.1993.1143
- Wood, WL. (1990), Practical Time-Stepping Schemes, Clarendon Press, Oxford, U.K
- Wu, T.Y. and Liu, G.R. (2000), 'The generalized differenential quadrature rule for initial-value differential equations', J Sound Vib., 233, 195-213 https://doi.org/10.1006/jsvi.1999.2815
- Zienkiewicz, O.C. (1977), The Finite Element Method in Engineering Science, 3rd edt. McGraw- Hill, London
- Zienkiewicz, O.C. and Lewis, R.W (1973), 'An analysis of various time-stepping schemes for initial value problems', Earth. Eng. Struct. Dyn., 1,407-408
Cited by
- In-plane and out-of-plane dynamics of a curved pipe conveying pulsating fluid vol.75, pp.3, 2014, https://doi.org/10.1007/s11071-013-1089-z
- Vibration analysis of plane frames by customized stiffness and diagonal mass matrices vol.225, pp.12, 2011, https://doi.org/10.1177/0954406211405435
- Response of moderately thick laminated composite plates on elastic foundation subjected to moving load vol.97, 2013, https://doi.org/10.1016/j.compstruct.2012.10.017
- A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads vol.92, pp.10, 2010, https://doi.org/10.1016/j.compstruct.2010.02.012
- Periodic Solution for Strongly Nonlinear Vibration Systems by He’s Energy Balance Method vol.106, pp.1, 2009, https://doi.org/10.1007/s10440-008-9283-6
- Assessments of dissipative structure-dependent integration methods vol.62, pp.2, 2007, https://doi.org/10.12989/sem.2017.62.2.151
- Nonlinear Vibration Behavior of Rapidly Heated Temperature-Dependent FGM Shallow Spherical Shells vol.57, pp.9, 2019, https://doi.org/10.2514/1.j058240
- Seismic assessment of thin steel plate shear walls with outrigger system vol.74, pp.2, 2007, https://doi.org/10.12989/sem.2020.74.2.267
- A dissipative family of eigen-based integration methods for nonlinear dynamic analysis vol.75, pp.5, 2007, https://doi.org/10.12989/sem.2020.75.5.541