DOI QR코드

DOI QR Code

Nonlinear dynamic response of MDOF systems by the method of harmonic differential quadrature (HDQ)

  • Civalek, Omer (Akdeniz University, Civil Engineering Department, Division of Mechanics)
  • Received : 2005.04.12
  • Accepted : 2006.04.18
  • Published : 2007.01.30

Abstract

A harmonic type differential quadrature approach for nonlinear dynamic analysis of multi-degree-of-freedom systems has been developed. A series of numerical examples is conducted to assess the performance of the HDQ method in linear and nonlinear dynamic analysis problems. Results are compared with the existing solutions available from other analytical and numerical methods. In all cases, the results obtained are quite accurate.

Keywords

References

  1. Bathe, KJ. (1982), Finite Element Procedures in Engineering Analysis. Englewood Cliffs. NJ: Prentice-Hall
  2. Bathe, KJ. and Wilson, E.L. (1973), 'Stability and accuracy analysis of direct integration methods', Earthq. Eng. Struct. Dyn., 1,283-291 https://doi.org/10.1002/eqe.4290010308
  3. Bert, C.W., Jang, S.K. and Striz, A.G (1987), 'Two new approximate methods for analyzing free vibration of structural components', AIAA J, 26(5), 612-618 https://doi.org/10.2514/3.9941
  4. Bert, C.W. and Malik, M. (1996), 'Differential quadrature method in computational mechanics: A review', Appl. Mech. Rev., 49(1), 1-28 https://doi.org/10.1115/1.3101882
  5. Bert, C.W. and Stricklin, J.D. (1988), 'Comparative evaluation of six different numerical methods for nonlinear dynamic systems', J Sound Vib., 127(2),221-229 https://doi.org/10.1016/0022-460X(88)90298-2
  6. Chopra, A.K. (1995), Dynamics of Structures, Theory and Applications to Earthquake Engineering. PrenticeHall, New Jersy
  7. Civalek, O. (2004), 'Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns', Eng. Struct., An Int. J, 26(2), 171-186 https://doi.org/10.1016/j.engstruct.2003.09.005
  8. Civalek, O. (2002), Diffrrential Quadrature (DQ) for Static and Dynamic Analysis of Structures (in Turkish), FIrat University
  9. Civalek, O. and Ulker, M. (2004a), 'Harmonic differential quadrature (HDQ) for axisymmetric bending analysis ofthin isotropic circular plates', Struct. Eng. Mech., 17(1), 1-14 https://doi.org/10.12989/sem.2004.17.1.001
  10. Civalek, O. and Ulker, M. (2004b), 'Free vibration analysis of elastic beams using harmonic differential quadrature (HDQ)', Math. and Comput. Appl., 9(2), 257-264
  11. Civalek, O. (2004b), 'Geometrically non-linear static and dynamic analysis of plates and shells resting on elastic foundation by the method of polynomial differential quadrature (PDQ)', PhD. Thesis, FIrat University, (in Turkish), ElazIg
  12. Civalek, O. (2003), 'Linear and nonlinear dynamic response of multi-degree-of freedom-systems by the method of harmonic differential quadrature (HDQ)', PhD. Thesis, Dokuz EylUl University, izmir
  13. Clough, R.W. and Penzien, J. (1975), Dynamics and Structures, McGraw-Hill, New York
  14. Du, H., Liew, K.M. and Lim, M.K. (1996), 'Generalized differential quadrature method for buckling analysis', J Eng. Mech., ASCE, 22(2), 95-100
  15. Dokainish, MA and Subbaraj, K. (1989), 'A survey of direct time-integration methods in computational structural dynamics-I, explicit methods', Comput. Struct., 32(6), 1371-1386 https://doi.org/10.1016/0045-7949(89)90314-3
  16. Dokainish, MA and Subbaraj, K. (1989), 'A survey of direct time-integration methods in computational structural dynamics-II, implicit methods', Comput. Struct., 32(6), 1387-1401 https://doi.org/10.1016/0045-7949(89)90315-5
  17. Fung, T.C. (1996), 'Unconditionally stable higher-order accurate Hermittian time finite elements', Int. J Numer. Meth. Eng., 39, 3475-3495 https://doi.org/10.1002/(SICI)1097-0207(19961030)39:20<3475::AID-NME10>3.0.CO;2-H
  18. Fung, TC. (1998), 'Higher order time step integration methods with complex time step', J Sound Vib., 210(1), 69-89 https://doi.org/10.1006/jsvi.1997.1300
  19. Fung, TC. (2001), 'Solving initial value problems by differential quadrature method-Part 1: First-order equations',Int. J Numer. Meth. Eng., 50, 1411-1427 https://doi.org/10.1002/1097-0207(20010228)50:6<1411::AID-NME78>3.0.CO;2-O
  20. Fung, TC. (2001a), 'Solving initial value problems by differential quadrature method-Part 2: Second-and higherorder- order equations', Int. J Numer. Meth. Eng., 50, 1429-1454 https://doi.org/10.1002/1097-0207(20010228)50:6<1429::AID-NME79>3.0.CO;2-A
  21. Fung, TC. (2002), 'Stability and accuracy of differential quadrature method in solving dynamic problems', Comput. Meth. Appl. Mech. Eng., 191, 1311-1331 https://doi.org/10.1016/S0045-7825(01)00324-3
  22. Fung, TC. (2002a), 'On the equivalence of the time domain differential quadrature method and dissipative Runge-Kutta collocation method', Int. J Numer. Meth. Eng., 53, 409-431 https://doi.org/10.1002/nme.283
  23. Fung, TC. (2003), 'Imposition of boundary conditions by modifYing the weighting coefficient matrices in the differential quadrature method', Int. J Numer. Meth. Eng., 56, 405-432 https://doi.org/10.1002/nme.571
  24. Fung, TC. (2003a), 'Generalized Lagrange functions and weighting coefficient formulae for the harmonic differential quadrature method', Int. J Numer. Meth. Eng., 57, 415-440 https://doi.org/10.1002/nme.692
  25. Houbolt, J.C. (1950), 'A recurrence matrix solution for the dynamic response of elastic aircraft', J of Aeronautical Sciences, 17, 540-550 https://doi.org/10.2514/8.1722
  26. Kutta, W. (1901), 'Beitrag Zur Naherungsweisen Integration Totaler Differentialgleichungen', Zeitschrifi fur Mathematik un Physik, 46, 435-453
  27. Liew, K.M. and Teo, TM. (1999), 'Three dimensional vibration analysis of rectangular plates based on differential quadrature method', J Sound Vib., 220(4), 577-599 https://doi.org/10.1006/jsvi.1998.1927
  28. Liew, K.M., Teo, TM. and Han, J.B. (1999a), 'Comparative accuracy of DQ and HDQ methods for threedimensional vibration analysis of rectangular plates', Int. J Numer. Meth. Eng., 45, 1831-1848 https://doi.org/10.1002/(SICI)1097-0207(19990830)45:12<1831::AID-NME656>3.0.CO;2-W
  29. Liew, K.M., Teo, TM. and Han, l-B. (2001), 'Three-dimensional static solutions of rectangular plates by variant differential quadrature method', Int. J Mech. Sci., 43, 1611-1628 https://doi.org/10.1016/S0020-7403(00)00098-9
  30. Liew, K.M., Huang, Y.Q. and Reddy, J.N. (2002), 'A hybrid moving least squares and differential quadrature (MLSDQ) meshfree method', Int. J Comput. Eng. Sic., 3(1), 1-12 https://doi.org/10.1142/S1465876302000526
  31. Liew, K.M. and Liu, F.-L. (1997), 'Differential cubature method: A solution technique for Kirchhoff plates of arbitrary shape', Comput. Meth. Appl. Mech. Eng., 145, 1-10 https://doi.org/10.1016/S0045-7825(96)01194-2
  32. Liew, K.M. and Han, J-B. (1997a), 'A four-node differential quadrature method for straight-sided quadrilateral Reissner/Mindlin plates', Comm. Numer. Meth. Eng., 13(2), 73-81 https://doi.org/10.1002/(SICI)1099-0887(199702)13:2<73::AID-CNM32>3.0.CO;2-W
  33. Liew, K.M., Han, J-B, Xiao, Z.M. and Du, H. (1996), 'Differentiel quadrature method for mindlin plates on winkler foundations', Int. J Mech. Sci., 38(4), 405-421 https://doi.org/10.1016/0020-7403(95)00062-3
  34. Liew, K.M. and Teo, TM. (1998), 'Modeling via differential quadrature method: Three-dimensional solutions for rectangular plates', Camp. Meth. in Appl. Mech. Eng., 159, 369-381 https://doi.org/10.1016/S0045-7825(97)00279-X
  35. Newmark, N.M. (1959), 'A method of computation for structural dynamics', J Eng. Mech. Div., ASCE, 85, 67-94
  36. Runge, e. (1895), 'Uber die numerische Auflosung von Differentialgleichungen', Mathematische Annalen, 46, 167-178 https://doi.org/10.1007/BF01446807
  37. Senjanovic, I. (1984), 'Harmonic accelaration method for dynamic structural analysis', Comput. Struct., 18(1), 71-80 https://doi.org/10.1016/0045-7949(84)90083-X
  38. Shu, C. and Xue, H. (1997), 'Explicit computations of weighting coefficients in the harmonic differential quadrature', J Sound Vib., 204(3), 549-555 https://doi.org/10.1006/jsvi.1996.0894
  39. Shu, C., Yao, Q. and Yeo, K.S. (2002), 'Block-marching in time with DQ discretization: An efficient method for time-dependent problems', Comput. Meth. Appl. Mech. Eng., 191,4587-4597 https://doi.org/10.1016/S0045-7825(02)00387-0
  40. Striz, A.G, Wang, X. and Bert, C.W (1995), 'Harmonic differential quadrature method and applications to analysis of structural components', Acta Mechanica, 111, 85-94 https://doi.org/10.1007/BF01187729
  41. Sun, K., Pires, J.A and Tao, J.R. (1991), 'A post-correction integration algorithm for non-linear dynamic analysis of structures', Earth. Eng. Struct. Dyn., 20, 1083-1097 https://doi.org/10.1002/eqe.4290201108
  42. Tanaka, M. and Chen, W (2001), 'Dual reciprocity BEM applied to transient elastodynamics problems with differenential quadrature method in time', Comput. Meth. Appl. Mech. Eng., 190,2331-2347 https://doi.org/10.1016/S0045-7825(00)00237-1
  43. Tanaka, M. and Chen, W (2001a), 'Coupling dual reciprocity BEM and differential qudrature method for timedependent diffusion problems', Appl. Mathematical Modeling, 25(3), 257-268 https://doi.org/10.1016/S0307-904X(00)00052-4
  44. Wang, X. and Bert, C.W (1993), 'A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates', J Sound Vib., 162, 566-572 https://doi.org/10.1006/jsvi.1993.1143
  45. Wood, WL. (1990), Practical Time-Stepping Schemes, Clarendon Press, Oxford, U.K
  46. Wu, T.Y. and Liu, G.R. (2000), 'The generalized differenential quadrature rule for initial-value differential equations', J Sound Vib., 233, 195-213 https://doi.org/10.1006/jsvi.1999.2815
  47. Zienkiewicz, O.C. (1977), The Finite Element Method in Engineering Science, 3rd edt. McGraw- Hill, London
  48. Zienkiewicz, O.C. and Lewis, R.W (1973), 'An analysis of various time-stepping schemes for initial value problems', Earth. Eng. Struct. Dyn., 1,407-408

Cited by

  1. In-plane and out-of-plane dynamics of a curved pipe conveying pulsating fluid vol.75, pp.3, 2014, https://doi.org/10.1007/s11071-013-1089-z
  2. Vibration analysis of plane frames by customized stiffness and diagonal mass matrices vol.225, pp.12, 2011, https://doi.org/10.1177/0954406211405435
  3. Response of moderately thick laminated composite plates on elastic foundation subjected to moving load vol.97, 2013, https://doi.org/10.1016/j.compstruct.2012.10.017
  4. A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads vol.92, pp.10, 2010, https://doi.org/10.1016/j.compstruct.2010.02.012
  5. Periodic Solution for Strongly Nonlinear Vibration Systems by He’s Energy Balance Method vol.106, pp.1, 2009, https://doi.org/10.1007/s10440-008-9283-6
  6. Assessments of dissipative structure-dependent integration methods vol.62, pp.2, 2007, https://doi.org/10.12989/sem.2017.62.2.151
  7. Nonlinear Vibration Behavior of Rapidly Heated Temperature-Dependent FGM Shallow Spherical Shells vol.57, pp.9, 2019, https://doi.org/10.2514/1.j058240
  8. Seismic assessment of thin steel plate shear walls with outrigger system vol.74, pp.2, 2007, https://doi.org/10.12989/sem.2020.74.2.267
  9. A dissipative family of eigen-based integration methods for nonlinear dynamic analysis vol.75, pp.5, 2007, https://doi.org/10.12989/sem.2020.75.5.541