Acknowledgement
Supported by : Ministry of Science and Technology
References
- Aminpour, M.A., Ransom, J.B. and McCleary, S.L. (1995), 'A coupled analysis method for structures with independently modeled finite element sub-domains', Int. J. Numer. Meth. Eng., 38, 3695-3718 https://doi.org/10.1002/nme.1620382109
- Aminpour, M.A., Krishnamurthy, T. and Fadale, T.D. (1998), 'Coupling of independently modeled three-dimensional finite element meshes with arbitrary shape interface boundaries', AIAA paper, 98-2060
- Cho, Y.-S., Jun, S., Im, S. and Kim, H.-G. (2005), 'An improved interface element with variable nodes for nonmatching finite element meshes', Comput. Meth. Appl. Mech. Eng., 194, 3022-3046 https://doi.org/10.1016/j.cma.2004.08.002
- Cho, Y.-S. and Im, S. (2006), 'MLS-based variable-node elements compatible with quadratic interpolation. Part 1: Formulation and application for non-matching meshes', Int. J. Numer. Meth. Eng., 65, 494-516 https://doi.org/10.1002/nme.1453
- Cho, Y.-S. and Im, S. (2006), 'MLS-based variable-node elements compatible with quadratic interpolation. Part II: application for finite crack element', Int. J. Numer. Meth. Eng., 65, 517-547 https://doi.org/10.1002/nme.1452
- Choi, C.K. and Lee, N.-H. (1996), 'A 3-D adaptive mesh refinement using variable-node solid transition element', Int. J. Numer. Meth. Eng., 39, 1585-1606 https://doi.org/10.1002/(SICI)1097-0207(19960515)39:9<1585::AID-NME918>3.0.CO;2-D
- Choi, C.K. and Lee, N.-H. (1993), 'Three dimensional transition solid elements for adaptive mesh gradation', Struct. Eng. Mech., 1, 61-74 https://doi.org/10.12989/sem.1993.1.1.061
- Choi, C.K. and Park, Y.M. (1989), 'A nonconforming transition plate bending elements with variable mid-side nodes', Comput. Struct., 32, 295-304 https://doi.org/10.1016/0045-7949(89)90041-2
- Choi, C.K. and Park, Y.M. (1997), 'Conforming and nonconforming transition plate bending elements for an adaptive h-refmement', Thin-Walled Struct., 28, 1-20 https://doi.org/10.1016/S0263-8231(97)00007-4
- Farhat, C. and Roux, F.X. (1991), 'A method of finite element tearing and interconnecting and its parallel solution algorithm', Int. J. Numer. Meth. Eng., 32, 1205-1227 https://doi.org/10.1002/nme.1620320604
- Gupta, A.K. (1978), 'A finite element for transition from a fine to a coarse grid', Int. J. Numer. Meth. Eng., 12, 35-45 https://doi.org/10.1002/nme.1620120104
- Han, W. and Meng, X. (2001), 'Error analysis of the reproducing kernel particle method', Comput. Meth. Appl. Mech. Eng., 190, 6157-6181 https://doi.org/10.1016/S0045-7825(01)00214-6
- Hinton, E. and Campbell, J.S. (1974), 'Local and global stress smoothing of discontinuous finite element functions using a least square method', Int. J. Numer. Meth. Eng., 8, 461-480 https://doi.org/10.1002/nme.1620080303
- Jin, X., Li, G. and Alum, R.N. (2001), 'On the equivalence between least square and kernel approximations in meshless methods', Comput. Model. Eng. Sci., 2, 341-350
- Kim, H.-G. (2002), 'Interface Element Method (IEM) for a partitioned system with non-matching interfaces', Comput. Meth. Appl. Mech. Eng., 191, 3165-3194 https://doi.org/10.1016/S0045-7825(02)00255-4
- Lancaster, P. and Salkauskas, K. (1981), 'Surface generated by moving least squares method', Math. Comp., 37, 141-158 https://doi.org/10.2307/2007507
- Lim, J.H., Im, S. and Cho, Y.-S., 'MLS(Moving Least Square)-based finite elements for complex domains and discontinuities', Int. J. Numer. Meth. Eng., Accepted for Publication
- Lim, J.H., Im, S. and Cho, Y.-S., 'MLS (Moving Least Square)-based finite elements for three-dimensional nonmatching meshes and adaptive mesh refinement', Comput. Meth. Appl. Mech. Eng., Accepted for Publication
- Liu, G.R., Gu, Y.T. and Dai, K.Y. (2004), 'Assessment and applications of point interpolation methods for computational mechanics', Int. J. Numer. Meth. Eng., 59, 1373-1397 https://doi.org/10.1002/nme.925
- Liu, W.K., Jun, S. and Zhang, Y.F. (1995), 'Reproducing kernel particle methods', Int. J. Numer. Meth. Fluids, 20, 1081-1106 https://doi.org/10.1002/fld.1650200824
- Pantano, A. and Averill, R.C. (2002), 'A penalty-based finite element interface technology', Comput. Struct., 80, 1725-1748 https://doi.org/10.1016/S0045-7949(02)00056-1
- Park, K.C., Felippa, C.A. and Rebel, G. (2002), 'A simple algorithm for localized construction of non-matching structural interfaces', Int. J. Numer. Meth. Eng., 53, 2117-2142 https://doi.org/10.1002/nme.374
- Quiroz, L. and Beckers, P. (1995), 'Non-conforming mesh gluing in the finite elements methods', Int. J. Numer. Meth. Eng., 38, 2165-2184 https://doi.org/10.1002/nme.1620381303
- Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity(3rd edn). McGraw-Hill, New York
Cited by
- A new computational approach to contact mechanics using variable-node finite elements vol.73, pp.13, 2008, https://doi.org/10.1002/nme.2162
- Finite element analysis of quasistatic crack propagation in brittle media with voids or inclusions vol.230, pp.17, 2011, https://doi.org/10.1016/j.jcp.2011.05.016
- A new three-dimensional variable-node finite element and its application for fluid–solid interaction problems vol.281, 2014, https://doi.org/10.1016/j.cma.2014.07.026
- An efficient three-dimensional adaptive quasicontinuum method using variable-node elements vol.228, pp.13, 2009, https://doi.org/10.1016/j.jcp.2009.03.028
- A sliding mesh technique for the finite element simulation of fluid–solid interaction problems by using variable-node elements vol.130, 2014, https://doi.org/10.1016/j.compstruc.2013.10.003
- A node-to-node scheme with the aid of variable-node elements for elasto-plastic contact analysis vol.102, pp.12, 2015, https://doi.org/10.1002/nme.4862
- Variable-node finite elements with smoothed integration techniques and their applications for multiscale mechanics problems vol.88, pp.7-8, 2010, https://doi.org/10.1016/j.compstruc.2009.12.004
- Three-dimensional variable-node elements based upon CS-FEM for elastic–plastic analysis vol.158, 2015, https://doi.org/10.1016/j.compstruc.2015.06.005
- MULTISCALE FINITE ELEMENT METHOD FOR HETEROGENEOUS MEDIA WITH MICROSTRUCTURES: CRACK PROPAGATION IN A POROUS MEDIUM vol.01, pp.01, 2009, https://doi.org/10.1142/S1756973709000086
- Variable-node element families for mesh connection and adaptive mesh computation vol.43, pp.3, 2012, https://doi.org/10.12989/sem.2012.43.3.349