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Self-Sustained Tone Simulations using the Finite Difference
Lattice Boltzmann Method with Flexible Specific Heat Ratio
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1. Introduction

As a relative new numerical method, the lattice
LEM)? 9 a novel kinetic-based
approach for similating fhiid flows and associated

Boltzmann
transport  phenomena, has been successfully
applied since it was developed from the latfice
gas cellllar automata method (LGCAYEE
Considered an aftractive alfernative to conventional
finite difference schemes because it recovers the

Navier-Stokes equations, the LEM i3
computationally  rmore  stable, and  easily
parallelizable.

In  traditional mumerical methods,  the

macroscopic variables are obtained by solving the
Navier-Stokes equations. But the LEM solves the
kinetic particle

microscopic equation  for
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distribution function from which the particle move
at unit speed on a regular grid subject to particle
movement and simplified collision rules which
conserve the fotal fhid mass, momentum and
energy. The present method uses regwlarly space
lattice, and particles residing on the latfice are
replaced by the
functions and  the operator 1S
approximated by the BGK assumption. It could be
considered as a special finite difference scheme of

corresponding  distribution
collision

the continuous Boltzmann equation on a regular
lattice™ which also defines the
discrete particle
discrefization for the particle velocity can he

associated
velocities. Therefare,
decoupled from the spatial discretization, since the
particle wvelocity in the Boltzmann eguation is
This implies
that this method can discretize the continuous

independent of the particle positionm

velocity space info a set of discrete velocities
with sufficient symmetry, while the usual spatial
space may be discretized in some curvilinear
coordinates.
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Meanwhile,
acoustic problems at relatively low Mach number
Ma=03) still is
problem, which is often seen in various fields of

the numerical solution of flow

flow conditions a major
industry. For instance prediction and reduction of

asrodynarmic  sound  is  as  important  as

improvement in aerodynamic performance for
further speed-up of present high-speed wvehicles
it dominates the overall sound that is
generated from such wvehicles. So, the finite
difference-based LEM (FDLEM) seems the most
promising method that  compufes  source
fluctnations in the flow for the prediction of

aerodynamic

since

sounds and at the same time
prediction of aerodynamic sound seems to be one
of the most appropriate areas of engineering
applications of LBM. In the fleld of aerodynamic
fundamental  studies
undertaken showing its wvalidity concerning linear

sounds  some has heen
and nonlinear wave pcropagation[gj, acoustical
streaming[g] and aeclian tonal™ So the use of the
ILEM or FDLEM as a tool for computational
acrodynarnic sounds can be seen as in ifs early
stage.

Most models in LBM or FDLBM
incompressible fluids due fo its simplicity of the
structure, and only a few
models for compressible or thermal-fluid model
B have been reported. In LEM, the mode of
energy of the fluid particle is limited to that due
to translation. Then the ratio of the specific heats
is

is for

simulations by the

~=(D+2)/D (1)

where D represents the space dimension. For the
case of Z-dimensional, the ratio of specific heat is
v= 2.0, and it will be applicable to monatomic
gases only but not to the most important diatomic
gas such as an air.

The overall purpose of this paper is, based on
detailed comparisons with the experimental and
numerical data, to demonstrate the capability of
FDLE model with flexible specific heat rafio -~
and acoustical simulations for the prediction of

sound that is generated from with a relatively
low Mach number. Our simulations deals with
Reynolds numbers, 200<Re=600 and 0.027=< 3,
= 0077, respectively.

The governing eguations and numerical method
for the FDLEM of compressible fluid model will
be presented in Section 2. The accuracy of the
FDLE model with flexible specific heat ratio -y
will be wvalidated in Section 3. Section 4 will
explained the predictions of edgetone in two
different cases including prediction of the far—field
sounds as a benchmark problems. In Section b,
conclusions will be surnmarized.

2. Computational methodology

2.1. Finite difference lattice Boltzmann method
The Boltzmann equation fo be solved is the

following  discretized  Bhathager-Gross-Krook
(BGK) equation as:

of  efiltr) 1 (0)

At T Ciey . = P [fg(f,r) fg (far)] (2)

where, the real number f; is the normalized
number of particles at each node r and time ¢,
moving direction ¢ and o the Cartesian
coordinates, f\% RHS is the local
equilibrium distribution function, and ¢ is call the
single relaxation time factor.

In equation (2), the relationship between the
relaxation time ¢ and the kinefic viscosity p is

on  the

given as,
2
p=pped (3

where p is density and e the internal energy per
unit mass. Here the stability criterion of the
collision term in RHS of Eq.(2) demands that the
time increment At< ¢/2, f we use the first
order Euler scheme for the fime infegrafion.
Therefore, the time increment must be very small
for high Reynolds number flow and calculation
efficient will be poor.

In order to apply for high Reynolds number and

speed up the calculation fime, the modified
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equation by Kang and Tsutahara™ in which the
third term is added fo the discretized BGK
equation (Eq.(2)) is transformed as:

af, af(tr)  Aey alf,— 1)
o T Cia 5 (4)

ar,, g
=< [nte0) - 0 te.0)

in which 4 (>0} is a constant, and other variables
are the same as in Eq.(2).

2.2 A model having flexible specific heat ratio

We propose a model having energy modes
except the ftranslation G(t,r)= f;(t,r)E(t,x) to
give the particle internal degree of freedom, which
was proposed by Takada and Tsutahara™ in
LBM. The distribution function @Glt,r) is
supposed to approach by collisions to ifs local
equilibrium state GI%= AV EY a5 the particle
distribution functions do, and the ewvolution of
G;(t,r) is transformed as

aG () Ae, alG— Q)
Cig r. @ o7, (5)
=— %[G;(t,r)— GOt )]

oG,
at

Here, assumed that all the particles at the local
equilibrium stage have the same rotation energy as:

NI

The local equilibrium distribution function can hbe
defined as

9 = Fpll — 2Bc u, + 2F (cu, )2 + Buug
(8)
— %ﬁ (Cigtte )} — 2B ciu uqu, ]

[1e vy
in which the subscript o represents Cartesian
The
explained in ref.[10]. Then the expression for the
ratio of the specific heats ~+ in Eq.{l) will be

written as

constants £, and B are

coordinates. ;

D+2 D+Dgz+2

T pt T D+Dg

(9
where D7 is the total degree of freedom of the
particle motion and Dy is the degree of freedom
of the rotation. Therefore, the ratio of the specific
heats v can be freely wvariable to 1.0<~v < 2.0
for Z2-dimensional model.

3. Veritication of accuracy

In order to wvalidate the applicability of the
present algorithm to acoustics, we consider a
weak propagating tube flow as shown in Fig.l,
with the size 1.0x0.0b (400x<100 cells). The
distribution is also dlustrated The
rectangular channel is a device in which weak

pressure

normal propagating waves are generated by the
rupture of a diagram initially separating a high
pressure gas from the low pressure gas. After the
rupture of the diagram, the system eventually
approaches fo an equilibrium state, with the final
state of the closed-end fube determined from the
first law of thermodynamics. Here, of primary
interest is not the final equilibrim sfate of the
gas, but the fransient weak wave phenomena
occuring immediately after the rupture of the
diagram.

The pressure ratio p,/p, is 1.0X% 10° and is so
small that linear compression and expansion
waves propagafes at the sound speed, where
specific heat ratio =14, internal energy e=0.5
and time increment A$=20x10°% In Fig. 2, the
sound speed sirmulated by the model of the
flexible specific heat ratio is compared to the
theoretical value as well as MacCormac scheme.
As shown in figure, it is confirmed that the
FDLBEM with the third-order upwind scheme
shows in much better agreement with the
theoretical prediction than that of second order
upwind scheme as well as MacCormac method,
suggesting that the model is able fo handle very
small
aerodynamic problems.

pressiwe  oscillations  occuming in
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b,
A =+10x107 g, =)
gl=g) !
= pg =1+ 10x107) g, B = 4y X
-

Fig. 1 Calculation condition

The oretical

e, 2nd upwind (FD LEM)
12k = memems Zrd upwind (FD LER
= Mac Cormac

Fig. 2 Comparison of theoretical, MacCormac and
FDLBM

4. Edgetone

FEdgetone is a discrete frequency sound
produced by several flow geometries in which a
free shear layer interacts with a solid boundary.
The sound is generated hecause the impinging jet
forms a self excited flow maintained by a
feedback loop. Particularly obvious are the main
featires by the simplifying considerations first
stated by Powell ™

A perturbation of the jet with speed &7 finally
resilts in a vortex further downstream. It fravels
with a phase velocity ¢, and encounters the edge
at the stand-off distance w. Here the vortex
interacts and radiates an acoustical wave feeding
back upstream to the region of the flue. Then the
oscillatory behaviour with the frequency [ is
related the phase velocity of both, the acoustical
wave ¢y as well as the perfurbation. Such a
feedback theory was proposed by Rossiter™ in

the following form,
k=1,2,3, - (10)

where % 1s constant for a stage. From

experiments it appears that k¥ has fo be replaced
by (k—3), 8 being a phase offset. As a result
the above relation would yield

Sy = k= 8)/ (Ul e, + Ma) (11

where Ma= Ulc, is the Mach number. In our
case ¢, is much larger than c,. Typical values for
e,/ U are between 0.4~0.6. Our inerest in this
research is focused on the stage I, or the
fundamental fluid dynarmical mode k=1

104 | 6d | 854 120 .54
19 5d
d ez 20 deg Y]
119 .54 s
L X
(a) Case I
wd |6d | 254 120 54
118 .5d
/,_23ng
/
! Z
A 3 N
0.4d
119 54 $
L) x
(b) Case II

Fig. 3 Edgetone geometries for 1y/qd=6

More recently, the theoretical developments
performed by Holger et al™ and Howe™ have
confirmed  the
derived from experimental or theoretical work

analogy. Several scaling laws
have also been proposed to fit the dependency of
the oscillation frequency f on the parameter d/w,
where d is the nozzle height and w denotes the
stand-off distance between the nozzle outlet and

_85_



Self-Sustained Tone Simulations using the Finite Difference Lattice Boltzmann Method with Flexdihle Specific Heat Ratic

the wedge. These authors proposed the following
more general law in term of the Strouhal number
S, for k=1:

S,=f+d/Uy=C+ (d/w) (12)

where n equals 3/2 for the «w dependence, and
U, the maximum velocity at the nozzle exif. In
general the constant (@ might depend also the
Reynolds number. In former experiments »n was
shown to be between 1 and 3/2, depending on the
experimental  configuration. There are two
explanations for a TDbehaviowr with n>1
depending on the state of furbulence of the jet. At
low  Reynolds numnbers the flow  is
pseudo-laminar. As will be argued below, the
phase velocity can be derived from linear
instability theory through dispersion relations.
From this, its frequency dependence resulis in

ne=1.

4.1 Numerical conditions

The edgetone configurations considered consist
of sharp edge tip located in the medial plane of a
fully developed two-dimensional jet as shown
Fig. 3. The height of the nozzle and the shape of
the edge are similar to those of Brown's work™
and Bamberger's work ™. Especially, Brown has
performed  detalled  experiments regarding  the
edgetone and obfained the following eguation.

f=0.466k(U—40)[%— 0.07} (13)
where f is the frequency with k=10, 2.3, 3.8 and
b4 for the four stages respectively.

The thickness of the models is 1 (mm) and all
the length scales are normalized Ty the height of
in the computations. Computational
domains are set for —10d = z < (1324~ 1414)
and —120<y < 1204 for each case, and the

nozzle d

edges are composed of angle of attack o = 20°
(Case 1) and 23°(Case II), respectively. The grids
are clustered at the edge walls. For spatial
derivatives, a third-order upwind scheme is

employed and a second-order Runge-Kutta
scheme is used for time integration. A parabolic
inflow profile for the velocity is prescribed on the
inflow boundary. Adiabatic and no-slip conditions
are employved on the wedge and walls, and
outer far field

calculation

outflow 1is imposed on the
boundary. Table 1
conditions for each case.

shows the

Table 1 Calculation conditions
wid cells

domains variables

104 <x <1324
-1204 <y <1204
10d<x <1354
-1204 <y <1204
-104<x <1384
-1204 <y <1204
10d<x<141d
-1204 <y <1204
10d<x<132d
-1204 <y <1204
10d<x <1354
-1204 <y <1204
104 <x <1384
-1204 <y <1204

10d<x<141d
-1204 <y <1204

3d (331381

64 [361<381

case 1
94 |397:<381

Re=250~600
4£=0.01

¥=1.4
207 air

124 |4332<381

3d |266 <301

64 (301301

case I
94 |321x301

124 |341<301

4.2 Evaluaticn and compariscn

The Stouhal numbers are plotted in Fig. 4 as a
function of ratio w/d. Ouwr simulations deal with
moderate Reynolds number, Re=250-600 and
Strovhal  numbers  0.027 = 5, < 0.077.
rather the sitnation n=1 is expected Three
valies of the stand-off distance w are considered
(6, 9 and 12 mm), and the results obtained at
frequency levels 1 are reported. The present

Hence,

calculations are compared to the experimental and
numerical ones obtained previously in similar flow
con’fig1.1ra‘c:ions[16 ¥ The theoretical law of Eq.(12)
with C'=0.92(k+04)
A is also presented in Fig.3 for frequency
levels k=1 and 2 In current results, the reliable
agreement  is

proposed by Holger et

found hetween  experimental,
numerical and theoretical resulfs concerning the

Strouhal number .

_86_



SR Ok - 50W. Abm - JLW. Kim and H. K. Kang

The first level frequencies are obtained in the
simuilations by analyzing the fime evolution of the
far-field pressure. Then the Strouhal numbers
predicted by the sirudations are plotted in Fig. b
for different Reynolds numbers ranging from 150
to 600, for each fype of injected air. A good
agreement by Devillers and Coutier—De]goshaHg] is
found in the whole range of Reynolds mumber.
The discrepancy is lower than 65 20 under

Re=b(0 in all cases.

035
| Holger et al (1977, stage 1)
— — = = Holger etal (1977, stage 2)
03F 4 e Biamuihier et al. (20043
Y ] Myhorg(1954)
% [+ Brown(1937)
025 A A Devillers&Contier{2005)
| A ‘\ u] Present simulation{case I)
. | ] Present simulation(s ase )
02F
=
015
0lf
005
D4 I é I é 1|2 ’ 1I4 ’ 16

10

wid

Fig. 4 Comparison of the Strouhal numbers with
FDLBM, experiments and theoretical results
(frequency stages 1 and 2)
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O35 fom-mm=mm1m=1 A DaillrshCoterop) ||
1 ! ! Y Drenrillersde ConttieriTommn)
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: : : Present simolationicace 27
0.05 100 200 300

0 A0 S e 700
Re

Fig. 5 Comparison between FDLBM and the results
by Devillers and Coutier-Delgosha[19] (stage I)

4.3 Feedback loop
In the near-field flow structure, instantaneous
vorticity for two different cases with w/d=6 are

presented in Figs. 6 and 7. The initial valies are
given at =12 m/s, Re=600 and ~+=14. A jet

(b) T=458

Fig. 6 Instantaneous vortex distribution for case I

a
St S /o))
o N/t f,V\

. . . L (/A

1} 5 10 15 20

(b) T=468

Fig. 7 Instantaneous vortex distribution for case II.
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which comes out of the nozzle first collides with
the edge, and then the jet begins to fluctuate.
This fluctuation synchronizes with the period of
the vortex, which arises from the top and bottom
wall in the vicinity of the nozzle exit. It is
considered that, because of the vortex, the
fluctuation of the jet i1s induced. Then with the
effect of the jet, the vortex moves toward
downstream, and it undulates like the form of the
jet by the rotation energy. As a result, the jet
changes its direction(Fig. 6(a)— (b} or Fig.7(a)—
(b)) due to the rotation of the vortex in the
vicinity where the vortex exceeded the tip of the
wedge, and flows into unilateral sides of the
wedge. In the real flow the vortices do not persist
far downstream and decay.

0.0002

abserving point(1004,100d)
mwmimame= Qbserving point(100d,-100d)

0.00015 [
00001 =
REE05 |-

-

oot L (a) case T

0.0002

ohserving point(1004,100 d)
ing point(1004,-100d)

—————-— ohservi

0.00015
00001

%EEVDE

0

-6E-05
(b) case II

-0.000% g 320

W0 pE 500
T(=U1/d)

Fig. 8 Time variations of acoustic pressure for each

case.

[T il |

. -0 DM‘E}DE o T[‘IEIDW B
(a) case I (b) case II
Fig. 9 Edgetone (-0.001<Ap<0.0016): (a) T=450;,
(b) T=460.

The time variations of the acoustic pressure
measured at two points are shown in Fig& for
the case of U,=12 m/s, respectively. The acoustic

pressure Ap is defined as

Ap=(p—py)/po (14)

The observing points are radically considered on
the edge tip (rg,y0), in which these points apart
from (100d, £100d) in x and y direction. The
sound signals fluctuate with a period of A¢=20.48
and 19.88, which corresponds to S,(= fd/u)=
0049 and 0.051,
pressure becomes periodic with maxima and

respectively. The acoustic
minima occurring at points,

To examine the farfield acoustic pressure for
the case of Ma=0.2 and Re=800, Fig. 9 shows the
acoustic pressure field for two different instants,
where the contour level Ap,, . fluctuates from
-0.001 to 0.002. As can be seen these figures,
with

with positive

rarefaction waves negative Ap and

compression  waves Ap are
generated alternately around the edge tip at the
origin, and propagate symmetrically in the upper

and lower parts of the wedge.

4.4 Stand-off distance with periodicity

In this section we discuss the effect of
stand-off distance between the nozzle exit and
the wedge for w/d=3, 6, 9 and 12, respectively.
Initial conditions are set Ma=0.2, Re=600 and ~
=1.4, respectively, and all calculation conditions
are the same in the case of previous section.
10(a)-(d} and 11(a)-(d) show the
instantaneous vorticity fields at t=46b. For each
case, it confirms that the blown jet oscillates at

Figs.

the upper and lower sides of the wedge, but the
flow patterns are different from each case. For
the case of stand-off distance w/d=3 and 6 in
Figs. 10 (a), (b) and 11(a), (b), the jet oscillates
in a periodic fashion, while for w/d=9 and 12 in
Figs. 10(c), (d) and 11(c), (d) it also oscillates but
the flows does not periodically. The greater w/d
allows more jet pattern variation before
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L
10

() w/d=12 (d) w/d=12

Fig. 10 Instantaneous vortex distribution under  Fig. 11 Instantaneous vortex distribution under

various w/d for case L various 1w/d for case IL
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Fig. 12 Time wvariations of acoustic pressure for
wfd=12.

interaction with the wedge. In case of w/d=12
figure 12 presents the acoustic signal measured
at (z,5)=1(1004,100d) from the tip of the edge.
In these figures when jet speed decreases as
wedge distance increases, the jet is more
susceptible to the wedge dipole effects, which
deflect the vortex/undulation
cenfers along the jet boundaries. Consequently,
the jet exhibits the extremely dynamic nature of
the edgetone flow field near the wedge apex.

jet and create

According fo Brown's expemnent[m], when the
distance from the wedge to the nozzle exit is
greater than w/d=20, the acoustic feedback, with
strength decreasing lLnearly with distance, would
be too weak to frigger alternate vortex shedding
at the nozzle exit.

5. Conclusions

The ability of the FDLEM fo produce
asrodynamic  sounds for relatively low Mach
number flows (Max< 0.3) which was introduced a
lattice BGK model for 21 bits with flexible
heat validated in
examples. Z2-dimensional edgetone phenomenon is
successfully simulated by the applied FDLEM,
agreed well with the other's experimental and

specific ratio, is several

numerical results.

The obtained results in this study show

potentiality of FDLEM of aerodynamic sounds
generated from arbitrary objects with complex
shapes.
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