DOI QR코드

DOI QR Code

Changes in Quality of Rehmanniae radix Preparata with Heating Conditions

열처리조건에 따른 숙지황의 품질변화

  • Song, Dae-Shik (Shinwon Food Industry Co.) ;
  • Woo, Koan-Sik (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Seong, Nak-Sull (National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Kwang-Yup (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Jeong, Heon-Sang (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Lee, Hee-Bong (Dept. of Food Science and Technology, Chungbuk National University)
  • Published : 2007.06.30

Abstract

This study was performed to develop a more simple and convenient heat treatment process for increasing heating temperature than the traditional 9-times steaming process for Rehmanniae radix Preparata (R. radix P.). The R. radix was heated to various temperatures (110, 120, 130, 140 and $150^{\circ}C$) for different lengths of time (1, 2, 3, 4 and 5 hr). Chromaticity, free sugar, amino acid, catalpol and 5-HMF (5-hydroxy-methyl-2-furaldehyde) content of water extracts of R. radix P. were analysed. With increasing heating temperature and time, the L, a and b-value of samples gradually decreased. Fructose and glucose contents were increased to $120^{\circ}C$ for 5 hr (5.21 and 6.67%, respectively) with no changes afterward. Sucrose content was not detected after $130^{\circ}C$. Total amino acid was increased to $140^{\circ}C$ and decreased afterward. The maximum total amino acid content was 4,172 mg/100 g at $140^{\circ}C$ for 2 hr (R. radix L.: 3,029 mg/100 g). The catalpol was decreased to $130^{\circ}C$ for 1 hr and not detected afterward. The 5-HMF content increased with increasing heating temperature and time. The maximum content of 5.HMF was 2.5% in $150^{\circ}C$ for 5 hr. Hence, it can be suggested that the heat treatment at $130^{\circ}C$ for 2 hr or more is the most optimum processing conditions, instead of the traditional 9.times steaming process.

숙지황을 간편하게 제조할 수 있는 새로운 방법을 개발하고자 고온고압처리방법을 적용시켜 처리조건에 따라 지표성분인 5-HMF의 함량과 몇 가지 품질특성의 변화를 조사하여 시판 숙지황과 비교분석하였다. 색도는 처리온도와 시간이 증가할수록 L, a, b값 모두 감소하였으며, $120^{\circ}C$, 4시간 처리와 $130^{\circ}C$, 2시간 처리 이후가 시판 숙지황의 색도와 유사하였다. Fructose는 $120^{\circ}C$에서 처리시간의 증가함에 따라 약간 증가하였고 그 후에는 큰 변화를 나타내지 않았으며, glucose는 $120^{\circ}C$, 3시간 처리까지 증가하였지만 그 후에는 변화가 적었다. Sucrose는 $130^{\circ}C$, 1시간 처리부터 검출되지 않았다. 아미노산은 모두 17종이 분석되었으며, 총 함량은 건지황에서 3,029 mg/100 g이었고 열처리온도가 증가할수 록 증가하여 $140^{\circ}C$, 2시간 처리에서 4,172 mg/100 g으로 가 장 높은 함량을 나타내었다. Catalpol 함량은 건지황에서 631.4 ppm이 검출되었으나 숙지황에서는 검출되지 않았고 고온고압처리에 의한 숙지황은 $130^{\circ}C$, 1시간 처리(275.9 ppm) 이후에 검출되지 않았다. 숙지황의 지표물질인 5-HMF는 건지황과 시판 숙지황에서 각각 0.12 및 4.04 mg/g으로 나타났다. 처리온도와 시간이 증가할수록 5-HMF 함량은 증가하였으며, $150^{\circ}C$, 5시간 처리구에서 24.95 mg/g으로 가장 높은 함량을 보였다. 5-HMF의 함량이 0.1% 이상일때 숙지황의 품질요건을 충족하므로 고온고압처리에 의한 숙지황 제조는 $130^{\circ}C$, 2시간에서 $140^{\circ}C$, 2시간 처리가 적합한 것으로 판단되었다.

Keywords

References

  1. Hong SP, Kim YC, Kim KH, Park JH, Park MK. 1993. Characteristic component of Rehmanniae radix Preparata compared to Rehmanniae radix and Rehmanniae radix Crudus. J Korean Soc Anal Sci 6: 401-404
  2. Lee CK, Seo JM. 2004. Changes of the constituents in the Rehmanniae radix Preparata during processing. J Korean Soc Food Sci Nutr 33: 1748-1752 https://doi.org/10.3746/jkfn.2004.33.10.1748
  3. Shih CK, Son YJ, Lee YJ. 1999. Changes in the carbohydrate contents of Rehmanniae radix during processing. Korean J Her 14: 1-11
  4. Lee JH, Koh JA, Hwang EY, Hong SP. 2002. Quantitative determination of 5-hydroxymethyl-2-furaldehyde from Rehmanniae radix Preparata according to various processings. Korean J Her 17: 145-149
  5. Chun JC, Kim JC, Hwang IT, Kim SE. 2002. Acteoside from Rehmannia glutinosa nullifies paraquat activity in Cucumis sativus. Pesticide Biochem Physiol 72: 153-159 https://doi.org/10.1016/S0048-3575(02)00008-1
  6. An SW, Kim YG, Kim MH, Lee HY, Seong NS. 1999. Comparison of biological activities of Rehmannia radix and R. radix Preparata produced in Korea. Korean J Med Crop Sci 7: 257-262
  7. Jo SI. 2003. Anti-oxidative effects of Radix rehmanniae Preparata on toxic agent induced kidney cell injury. Korean J Her 18: 119-126
  8. Jo SI. 2005. Effects of the Rehmanniae radix Preparat on ovariectomized rats. Korean J Her 20: 61-67
  9. 한국약학대학협의회 약전분과회 편저. 2003. 대한약전 제8개정 해설서. 도서출판 신일상사, 서울. p 1166
  10. Kim NJ, Jung EA, Kim HJ, Sim SB, Kim JW. 2000. Quality evaluation of various dried roots of Rehmannia glutinosa. Korean J Pharmacogn 31: 130-141
  11. Hwang SY, Hwang BY, Choi WH, Jung HJ, Huh JD, Lee KS, Ro JS. 2001. Quantitative determination of 5-hydroxymethyl-2-furaldehyde in the Rehmanniae radix Preparata samples at various processing stages. Korean J Pharmacogn 32: 116-120
  12. Lee BK, Jung JE, Choi YH. 2005. Optimization of microwave-assisted extraction process of Rehmannia radix Preparata by response surface methodology. Food Eng Pro 9: 283-290
  13. Lee YJ. 1998. Studies on the constituents analysis for commercial Rehmanniae radix Preparata. Korean J Her 13: 1-6
  14. Woo KS, Jang KI, Kim KY, Lee HB, Jeong HS. 2006. Antioxidative activity of heat treated licorice (Glycyrrhiza uralensis Fisch) extracts. Korean J Food Sci Technol 38: 355-360
  15. Kwon OC, Woo KS, Kim TM, Kim DJ, Hong JT, Jeong HS. 2006. Physicochemical characteristics of garlic (Allium sativum L.) on the high temperature and pressure treatment. Korean J Food Sci Technol 38: 331-336
  16. Hwang IG, Woo KS, Kim TM, Kim DJ, Yang MH, Jeong HS. 2006. Change of physicochemical characteristics of Korean pear (Pyrus pyrifolia Nakai) juice with heat treatment conditions. Korean J Food Sci Technol 38: 342-347
  17. Bae SK, Lee YC, Kim HW. 2001. The browning reaction and inhibition on apple concentrated juice. J Korean Soc Food Sci Nutr 30: 6-13
  18. Kim JW, Choi HY, Cho JH, Ahn DK, Yook CS, Byun MW, Lee J, Im MH, Kim DH. 2005. Studies on the stability of catalpol components, and genotoxic safety of $\gamma$-irradiated Rehmanniae radix crude. Korean J Pharmacogn 36: 75-80
  19. Quintas M, Brandao TRS, Silva CLM. 2007. Modelling autocatalytic behaviour of a food model system-sucrose thermal degradation at high concentrations. J Food Eng 78: 537-545 https://doi.org/10.1016/j.jfoodeng.2005.10.031
  20. Ivan S, Igor S, Marek V. 2003. Primary reactions of sucrose thermal degradation. J Anal Appl Pyrolysis 70: 493-504 https://doi.org/10.1016/S0165-2370(03)00007-X

Cited by

  1. Quality Characteristics and Antioxidant Activities of Rehmannia glutinosa JungKwa Prepared with Different Kinds of Sugars vol.30, pp.1, 2014, https://doi.org/10.9724/kfcs.2014.30.1.076
  2. Quality Characteristics and Antioxidant Activities of Rehmanniae radix Paste vol.40, pp.11, 2011, https://doi.org/10.3746/jkfn.2011.40.11.1518
  3. Characteristics and Antioxidant Activities of Rehmanniae radix Powder vol.42, pp.1, 2013, https://doi.org/10.3746/jkfn.2013.42.1.062
  4. Qualities and Anti-inflammatory Activity of Kyungokgos Sold in Local Markets vol.42, pp.3, 2013, https://doi.org/10.3746/jkfn.2013.42.3.335
  5. Physicochemical Characteristics and Antioxidant Activities of Doragi (Platycodon grandiflorum) at Different Aging Temperatures and for Various Durations vol.42, pp.9, 2013, https://doi.org/10.3746/jkfn.2013.42.9.1405
  6. Variation of main components according to the number of steaming and drying of Rehmanniae radix preparata vol.21, pp.2, 2007, https://doi.org/10.3831/kpi.2018.21.014
  7. 추출용매에 따른 ACTS002의 항산화 활성 및 지표성분의 함량 비교 vol.40, pp.3, 2007, https://doi.org/10.22246/jikm.2019.40.3.331
  8. Quality Characteristics of Prepared Rehmannia Root with Four Domestic Cultivars vol.51, pp.4, 2019, https://doi.org/10.9787/kjbs.2019.51.4.386