DOI QR코드

DOI QR Code

ZnO thin film deposition at low temperature using ALD

ALD를 이용한 저온에서의 ZnO 박막 증착

  • Kim, H.S. (Department of Applied Physics, Dankook University)
  • Published : 2007.05.30

Abstract

ZnO thin films were deposited on a Si wafer and a soda lime glass using atomic layer deposition(ALD). The substrate temperature were between $130^{\circ}C{\sim}150^{\circ}C$. The deposition rate of the ZnO film was measured to be $2.72{\AA}$ per cycle. The films were analyzed using field emission scanning electron microscopy(FESEM), X-ray diffractometer(XRD), and Auger electron spectroscopy(AES). Impurity-free ZnO thin films were obtained and the crystallinity was found to be dependant upon the substrate temperature.

Atomic layer deposition(ALD)를 이용하여 Si와 soda lime glass 기판 위에 ZnO 박막을 증착하였다. 기판의 온도는 비교적 저온인 $130^{\circ}C{\sim}150^{\circ}C$를 채택하였다. 증착결과 단위 cycle 당 $2.72{\AA}$이 증착되어 균일한 박막이 증착되었음이 확인되었다. 증착된 박막의 결정성을 X-ray diffraction(XRD)으로 조사해본 결과 비교적 저온에서도 (100)과 (101)방향의 성장이 우세하였다. 또 Auger electron spectroscopy(AES)로 분석해본 결과 불순물이 없는 순도 높은 박막이 성장되었음을 알 수 있었다.

Keywords

References

  1. Y. Yan, S. B. Zhang, and S. T. Pantelides, Phys. Rev. Lett. 86, 5723 (2001) https://doi.org/10.1103/PhysRevLett.86.5723
  2. M. Scharrer, X. Wu, A. Yamilov, H. Cao,and P. H. Chang, Appl. Phys. Lett. 86, 151113 (2005) https://doi.org/10.1063/1.1900957
  3. C. S. Son, S. M. Kim, Y. H. Kim, S. I. Kim, Y. T. Kim, K. H. Yoon, I. H. Choi, and H. C. Lopez, J. Korean Phys. Soc. 45, S685 (2004)
  4. B. Sang, A. Yamada and M. Konagai , Solar Energy Materials and Solar Cells, 49, 19-26(1997) https://doi.org/10.1016/S0927-0248(97)00171-2
  5. A. Yamada, B. Sang and M. Konagai, Applied Surface Science, 112, 216-222(1997) https://doi.org/10.1016/S0169-4332(96)01022-7
  6. X.B. Wang, C. Song, D.M. Li, K.W. Geng, F. Zeng,and F. Pan, Applied Surface Science, 253, 1639-1643(2006) https://doi.org/10.1016/j.apsusc.2006.02.059
  7. M. Benetti, D. Cannatá, F. Di Pietrantonio, E. Verona, P. Verardi, N. Scarisoreanu, D. Matei, G. Dinescu, A. Moldovan, and M. Dinescu, Superlattices and Microstructures, 39, 366-375(2006) https://doi.org/10.1016/j.spmi.2005.08.073
  8. F. Wang, R. Liu, A. Pan, L. Cao, K. Cheng, B. Xue, G. Wang, Q. Meng, J. Li, Q. Li, et al., Materials Letters, 61, 2000-2003(2007) https://doi.org/10.1016/j.matlet.2006.08.007
  9. J. Hupkes, B. Rech, O. Kluth, T. Repmann, B. Zwaygardt, J. Müller, R. Drese, and M. Wuttig, Solar Energy Materials and Solar Cells, 90, 3054- 3060(2006) https://doi.org/10.1016/j.solmat.2006.06.027
  10. H. Kim and P. C. Mcintyre, J. Korean Phys. Soc. 48, 5 (2006)
  11. W. Lee, Y. Choi, K. Hong, N. H. Kim, Y. Park, and J. Park, J. Korean phys. Soc. 46, L756 (2005)
  12. B. Sang and M. Konagai, Proc. 25th PVSC, Washington, D.C. 1085 (1996)
  13. Y. Du, X. Du and S.M. George , Thin Solid Films, 491, 43-53(2005) https://doi.org/10.1016/j.tsf.2005.05.051
  14. V. Sammelselg, A. Rosental, A. Tarre, L. Niinistö, K. Heiskanen, K. Ilmonen, L. -S. Johansson, and T. Uustare, Applied Surface Science, 134, 78-86 (1998) https://doi.org/10.1016/S0169-4332(98)00224-4
  15. B. Sang and M. Konagai, Proc. 25th PVSC, Washington, D.C. 1085 (1996)
  16. E. H. Kim, D. H. Lee,B. H. Chung, H. S. Kim, Y. Kim, and S. J. Noh, J. Korean Phys. Soc. 50, In Press (2007) https://doi.org/10.3938/jkps.50.1716