Texture Image Database Retrieval Using JPEG-2000 Partial Entropy Decoding

JPEG-2000 부분 엔트로피 복호화에 의향 질감 영상 데이터베이스 검색

  • 박하중 (영남대학교 정보통신공학과 멀티미디어 신호처리 연구실) ;
  • 정호열 (영남대학교 정보통신공학과 멀티미디어 신호처리 연구실)
  • Published : 2007.05.31

Abstract

In this paper, we propose a novel JPEG-2000 compressed image retrieval system using feature vector extracted through partial entropy decoding. Main idea of the proposed method is to utilize the context information that is generated during entropy encoding/decoding. In the framework of JPEG-2000, the context of a current coefficient is determined depending on the pattern of the significance and/or the sign of its neighbors in three bit-plane coding passes and four coding modes. The contexts provide a model for estimating the probability of each symbol to be coded. And they can efficiently describe texture images which have different pattern because they represent the local property of images. In addition, our system can directly search the images in the JPEG-2000 compressed domain without full decompression. Therefore, our proposed scheme can accelerate the work of retrieving images. We create various distortion and similarity image databases using MIT VisTex texture images for simulation. we evaluate the proposed algorithm comparing with the previous ones. Through simulations, we demonstrate that our method achieves good performance in terms of the retrieval accuracy as well as the computational complexity.

본 논문에서는 엔트로피 복호화 과정을 부분적으로 수행하여 특징 벡터를 구성하는 새로운 JPEG-2000 압축 영상 검색 시스템을 제안한다. 제안하는 방법은 JPEG-2000 엔트로피 부호화 과정을 통해 발생하는 다양한 문맥 정보를 이용한다. 엔트로피 부호화 기술은 주위 인접한 웨이블릿 계수들의 부호 및 중요 상태 계수의 구조적인 패턴을 분석하여 세 가지의 부호화 패스 및 네 가지의 부호화 기술을 통해 총 19가지의 문맥 정보를 발생한다. 문맥 정보는 산술 부호화 과정에서 부호화 하는 심벌의 확률을 예측하기 위한 모델을 제공한다. 그리고 문맥 정보는 영상의 국부적인 특징을 서술 할 수 있기 때문에 다양한 패턴 특성을 나타내는 질감 영상을 효율적으로 정의할 수 있다. 또한 제안하는 알고리즘은 JPEG-2000 압축 영상에서 복호화 과정을 부분적으로 수행하기 때문에 영상 검색을 수행하기 위한 검색 시간에서 뛰어난 성능을 나타낼 수 있다. 실험을 위해 MIT VisTex 질감 영상을 이용하여 다양한 왜곡 영상 및 유사 영상 데이터베이스를 구성하였으며 기존 검색 알고리즘을 구현하여 제안하는 검색 시스템과 비교 및 평가한다. 본 논문에서 제안하는 알고리즘이 기존 검색 방법보다 검색 성능에서 뛰어날 뿐만 아니라 검색 시간에서도 많은 이득을 얻을 수 있다.

Keywords

References

  1. Khalid Sayood, 'Introduction to Data Com pression', T hird E dition (M organ K aufm ann Series in Multimedia Information and Systems), Dec 1, 2005
  2. Information technology, JPEG-2000 image coding system, ISO/IEC International Standard 15444-1, ITU Recommendation T.800, Dec, 2000
  3. JPSearch Call for Proposals(CFP), ISO/IEC JTC1/SC29/WG1 N3792, Nov, 2005
  4. Majid Rabbani and Rajan Joshi, 'An overview of the JPEG-2000 still image compression standard', Signal Processing: Image Communication, Volume 17, Issue 1, Jan 2002, Pages 3-48 https://doi.org/10.1016/S0923-5965(01)00024-8
  5. D. Taubman, 'High performance scalable image compression with ebcot', IEEE Trans. on Image Processing, vol. 9, pp. 1158-1170, July, 2000 https://doi.org/10.1109/83.847830
  6. Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen and Liang-Gee Chen, 'Analysis and architecture design of block-coding engine for EBCOT in JPEG-2000', IEEE Trans. Circuit & System for Video Tech., Vol.13, No.3 Mar 2003, Pages 219-230 https://doi.org/10.1109/TCSVT.2003.809833
  7. J. M. Shapiro, 'An embedded hierarchical image coder using zerotrees of wavelet coefficients', in IEEE Data Compression Conf., Snowbird, UT, 1993, pp. 214-223
  8. A. Said and W. Pearlman, 'A new, fast and efficient image codec based on set partitioning in hierarchical image coder using zerotrees of wavelet coefficients', IEEE Trans. Circuits Syst. Video Technol., vol. 6, pp. 243-250, June, 1996 https://doi.org/10.1109/76.499834
  9. Arnold W. M. Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta and Ramesh Jain, 'Content-based image retrieval at the end of the early years', IEEE Trans. on Pattern Analysis and Machine Intelligence, Volume 22, Issue 12, Dec. 2000 Pages 1349-1380 https://doi.org/10.1109/34.895972
  10. Guocan Feng and Jianmin Jiang, 'JPEG compressed image retrieval via statistical features', Pattern Recognition, Volume 36, Issue 4, April 2003, Pages 977-985 https://doi.org/10.1016/S0031-3203(02)00114-0
  11. Chin-Chen Chang, Jun-Chou Chuang and Yih-Shin Hu, 'Retrieving digital images from a JPEG compressed image database', Image and Vision Computing, Volume 22, Issue 6, 1 June 2004, Pages 471-484 https://doi.org/10.1016/j.imavis.2003.11.008
  12. Xiong Z. and Huang T. S., 'Wavelet-based texture features can be extracted efficiently from compressed-domain for JPEG-2000 coded images', IEEE International Conference on Image Processing (ICIP). Volume 1, 2002
  13. Xiong, Z. and Huang, T. S., 'Block-based, memory-efficient JPEG2000 images indexing in compressed-domain', IEEE Southwest Symposium on Image Analysis and Interpretation(SSIAI), April, 2002
  14. S. Arivazhagan and L. Ganesan, 'Texture classification using wavelet transform', Pattern Recognition Letters, Volume 24, Issues 9-10, June 2003, Pages 1513-1521 https://doi.org/10.1016/S0167-8655(02)00160-5
  15. Minh N. Do and Martin Vetterli, 'Wavelet-based texture retrieval using generalized gaussian density and Kullback-Leibler distance', IEEE Trans. on Image Processing, Volume 11, Feb. 2002 Pages 146-158 https://doi.org/10.1109/83.982822
  16. 천 영덕, 서 상용, 김 남철, '질감특징의 융합을 이용한 영상검색', 한국통신학회, 한국통신학회 논문지 제 27권 3A호, 2002. 3, pp. 258-267
  17. Mandal M. K. and Liu C., 'Efficient image indexing techniques in the JPEG-2000 domain', Journal of Electronic Imaging, 179-187, 2004
  18. Jiang J., Guo B. and Li P., 'Extracting shape features in JPEG-2000 images indexing in compressed domain', ADVIS '02: Proceedings of the Second International Conference on Advances in Information Systems, London, UK, Springer-Verlag 2002, 123-132
  19. Lin Ni, 'A novel image retrieval scheme in JPEG-2000 compressed domain based on tree distance', ICICS, Volume 3, Dec 2003, Pages 15-18
  20. Neelamani R. and Berkner K., 'Adaptive representation of JPEG-2000 images using header-based processing', IEEE International Conference on Image Processing(ICIP). Volume 1. 2002
  21. Tabesh A., Bilgin A., Krishnan K. and Marcellin M. W., 'JPEG-2000 and motion jpeg2000 content analysis using codestream length information', In Proceedings of the Data Compression Conference(DCC''05). 2005
  22. Ha-Joong Park and Ho-Youl Jung, 'JPEG-2000 Compressed Image Retrieval Using Partial Entropy Decoding', International Workshop, MRCS(Lecture Notes in Computer Science), 2006, Istanbul, Turkey, September 11-13, 410-417, 2006
  23. J. S. D. Bonet and P. Viola, 'Texture recognition using a non-parametric multi-scale statistical model,' in Proc. IEEE Conf. Computer Vision Pattern Recognition, 1998
  24. MIT Vision and Modeling Group. Vision Texture(VisTex), [Online]. Available: http://vismod.www.media.mit.edu