Synthesis of Osmium Redox Complex and Its Application for Biosensor Using an Electrochemical Method

오스뮴 착물 합성과 전기화학적인 방법을 이용한 바이오센서에 관한 연구

  • Choi, Young-Bong (Department of Chemistry and Institute of Basic Sciences, Dankook University) ;
  • Kim, Hyug-Han (Department of Chemistry and Institute of Basic Sciences, Dankook University)
  • 최영봉 (단국대학교 첨단과학대학) ;
  • 김혁한 (단국대학교 첨단과학대학)
  • Published : 2007.05.28


Redox complexes to transport electrodes from biomaterial to electrodes are very important part in commercial biosensor industry. A novel osmium redox complex was synthesized by the coordinating pyridine group with osmium metal. A novel osmium complex is described as $[Os(dme-bpy)_2(ap-im)Cl]^{+/2+}$. We have been studied the electrochemical characteristics of this osmium complex with electrochemical techniques such as cyclic voltammetry and chronoamperommetry. In order to immobilize osmium redox complexes on the electrode, we deposited gold nano-particles on screen printed carbon electrode(SPE). The electrical signal converts the osmium redox films into an electrocatalyst for glucose oxidation. The catalytic currents were monitored that the catalytic currents were linearly increased from 1 mM to 5 mM concentrations of glucose.

본 연구에서는 8족 금속 원소인 오스뮴을 중심금속으로 일차아민을 포함하고 있는 피리딘 (pyridine) 화합물을 배위시켜 착화합물을 합성하였다. 합성된 오스뮴 착화합물은 $[Os(dme-bpy)_2(ap-im)Cl]^{+/2+}$을 순환전압전류법을 포함한 다양한 전기화학분석법을 이용하여 전기적인 성질을 조사하였다. 또한 합성된 일차 아민을 갖는 오스뮴 착화합물을 이용하여 당 측정용 바이오센서를 제작하기 위하여 금 나노입자(Cold nano-particles)를 전기적 흡착방법을 이용하여 스크린 인쇄방법으로 만든 탄소반죽 전극 (Screen Printed Carbon Electrodes, SPEs) 위에 고정화를 시켰다. 당과 당 분해효소(Glucose Oxidase, GOx)를 혼합하여 발생하는 산화촉매전류를 확인하였고, 당 농도에 따라 변화하는 산화촉매전류의 양도 확인하였다. 새롭게 만들어진 바이오센서는 1 mM 과 같은 낮은 농도에서 감응할 수 있는 바이오센서에 응용할 수 있음을 확인하였다.



  1. L. C. Clark Jr. and C. Lyons, 'Electrode systems for continuous monitoring in cardiovascular surgery' Ann. N.Y. Acad. Sci., 102, 29 (1962)
  2. A. L. Crumbliss, H. A. O Hill and D. J. Page, 'The electrochemistry of hexacyanoruthenate at carbon electrodes and the use of ruthenium compounds as mediators in the glucose/glucose oxidase system' J. Electroanal. Chem. Interfacial Electrochem., 206, 327 (1986)
  3. M. A. Lange and J. Q. Chambers, 'Amperometric determination of glucose with a ferrocene-mediated glucose oxidase/polyacrylamide gel electrode' Anal. Chim. Acta., 175, 89 (1985)
  4. D. A. Gough, J. Y. Lucisano and P. H. S. Tse, 'Two-dimensional enzyme electrode sensor for glucose' Anal. Chem., 57, 2351 (1985)
  5. A. P. F. Tumer, 'Diabetes mellitus: biosensors for research and management' World Biotech. Rep., 1, 181 (1985)
  6. K. Mckenna and A. Brajter-Toth, 'Tetrathiofulvalene tetracyanoquinodimethane xanthine oxidase amperometric electrode for the determination of biological purines' Anal. Chem., 59, 954 (1987)
  7. P. D. Hale and T. A. Skotheim, 'Cyclic voltammetry at TCNQ and TTF-TCNQ modified platinum electrodes: A study of the glucose oxidase/glucose and galactose oxidase/galactose systems' Synth. Met., 28, 853 (1989)
  8. B. A. Gregg and A. Heller, 'Redox polymer films containing enzymes. 2. Glucose oxidase containing enzyme electrodes' J. Phys. Chem., 95, 5976 (1991)
  9. M. S. Vreeke, K. T. Yong and A. Heller, 'A Thermostable Hydrogen Peroxide Sensor Based on 'Wiring' of Soybean Peroxidase' Anal. Chem., 67, 4247 (1995)
  10. R. M. Ianiello, T. J. Lindsay and A. M. Yacynych, 'Differential pulse voltammetric study of direct electron transfer in glucose oxidase chemically modified graphite electrodes' Anal. Chem. 54, 1098 (1982)
  11. O. Miyawaki and L. B. Wingard, Jr., 'Electrochemical and enzymatic activity of flavin adenine dinucleotide and glucose oxidase immobilized by adsorption on carbon' Biotech. Bioeng. 26, 1364 (1984)
  12. C. Taylor, G. Kenausis, I. Katakis and A. Heller, ''Wiring' of glucose oxidase within a hydrogel made with polyvinyl imidazole complexed with $[(Os-4,4-dimethoxy-2,2-bipyridine)Cl]^{+/2+}$' J. Electroanal. Chem., 396, 511 (1995)
  13. S. Anderson, E. C. Constable, K. R. Seddon, E. T. Turp, J. E. Baggott and J. Pilling, 'Preparation and characterization of 2,2-bipyridine-4,4-disulphonic and-5-sulphonic acids and their ruthenium(II) complexes' J. Chem. Soc. Dalton Trans., 2247 (1985)
  14. G. Kenausis, C. Taylor, R. Rajagopalan and A. Heller, ''Wiring' of glucose oxidase and lactate oxidase within a hydrogel made with poly(vinyl pyridine) complexed with $[(Os(4,4'-dimethoxy-2, 2'-bipyridine)Cl]^{+/2+}$', J. Chem. Soc., Faraday Trans., 92, 4131 (1996)
  15. G. Maerker and F. H. Case, 'The Synthesis of Some 4,4'-Disubstituted 2,2'-Bipyridines' J. Am. Chem. Soc., 80, 2745 (1958)
  16. S. M. Zakeeruddin, D. M. Fraser, M.-K. Nazeeruddin and M. Grtzel, Towards mediator design: Characterization of tris-( 4, 4-substituted-2, 2-bipyridine) complexes of iron (II), ruthenium(II) and osmium(II) as mediators for glucose oxidase of Aspergillus niger and other redox proteins' J. Electroanal. Chem., 337, 253 (1992)
  17. R. J. Forster and J. G. Vos, 'Synthesis, Characterization, and Properties of a Series of Osmium- and Ruthenium-Containing Metallopolymers' Macromolecule, 23, 4372 (1990)
  18. C. Taylor, G. Kenausis, I. Katakis and A. Heller, ''Wiring' of glucose oxidase within a hydrogel made with polyvinyl imidazole complexed with $[(Os-4, 4-dimethoxy-2, 2-bipyridine)Cl]^{+/2+}$' J. Electroanal. Chem., 396, 511 (1995)
  19. A. Aoki, R. Rajagopalan and A. Heller, 'Effect of Quaternization on Electron Diffusion Coefficients for Redox Hydrogels Based on Poly(4-vinylpyridine)' J. Phys. Chem., 99, 5102 (1995)

Cited by

  1. Electrochemical Immobilization of Osmium Complex onto the Carbon Nano-Tube Electrodes and its Application for Glucose sensor vol.13, pp.1, 2010,
  2. Simple Electrochemical Immunosensor for the Detection of Hippuric Acid on the Screen-printed Carbon Electrode Modified Gold Nanoparticles vol.14, pp.1, 2011,