DOI QR코드

DOI QR Code

Antifungal Activity of Plumbagin Purified from Leaves of Nepenthes ventricosa x maxima against Phytopathogenic Fungi

  • Published : 2007.06.30

Abstract

A kind of naphthoquinone, plumbagin was purified and identified from the leaves of Nepenthes $ventricosa\;{\times}\;maxima$ through solvent extraction, silica gel column chromatography, and recrystallization. The yield (0.51%) was higher than that of the root of Plumbago scandens (0.26%), P. capensis (0.15%), and N. thorelii (0.092%). It exhibited antifungal activity against all plant pathogenic fungi tested, Alternaria alternata, Aspergillus niger, Bipolaris oryzae, Fusarium oxysporum, Phytophthora capsici, Rhizoctonia solani, Rhizopus stolonifer var. stolonifer and Sclerotinia sclerotiorum. The minimum inhibitory concentration values ranged from about 4.8 to $56.6\;{\mu}g/ml$ against the above eight fungi and R. solani was the most sensitive.

Keywords

References

  1. Aung, H. H., Chia, L. S., Goh, N. K., Chia, T. F., Ahmed, A. A., Pare, P. W. and Mabry, T. J. 2002. Phenolic constituents from the leaves of the carnivorous plant Nepenthes gracilis. Fitoterapia 73:445-447 https://doi.org/10.1016/S0367-326X(02)00113-2
  2. Cannon, J. R., Lojanapiwatna, v., Raston, C. L., Sinchai, W. and White, A. H. 1980. The quinones of Nepenthes rafflesiana. Aust. J. Chem. 33: 1075-1093
  3. Cho, J. Y., Choi, G. J., Lee, S. W., Jang, K. S., Lim, H. K., Lim, C. H., Lee, S. O., Cho, K. Y. and Kim, J. C. 2006. Antifungal activity against Colletotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. J. Microbiol. Biotechnol. 16:280-285
  4. Crouch, I. J., Finnie, J. F. and Staden, J. 1990. Studies on the isolation of plumbagin from in vitro and in vivo grown Drosera species. Plant Cell Tissue Organ Cult. 21:79-82 https://doi.org/10.1007/BF00034496
  5. Daouk, R. K., Dagher, S. M. and Sattout, E. J. 1995. Antifungal activity of the essential oil of Origanum syriacum L. J. Food. Prot. 58:1147-1149 https://doi.org/10.4315/0362-028X-58.10.1147
  6. Didry, N., Dubrevil, L. and Pinkas, M. 1994. Activity of anthraquinonic and naphthoquinonic compounds on oral bacteria. Die Pharmazie 49:681-683
  7. Heble, M. R., Narayanaswamy, S. and Chadha, M. S. 1974. Tissue differentiation and plumbagin synthesis in variant cell strains of Plumbago zeylanica L. in vitro. Plant Sci. Lett. 2:405 https://doi.org/10.1016/0304-4211(74)90051-0
  8. Hwang, Y. H., Matsushita, Y. I., Sugamoto, K. and Matsui, T. 2005. Antimicrobial effect of the wood vinegar from Cryptomeria japonica sapwood on plant pathogenic microorganisms. J. Microbiol. Biotechnol. 15:1106-1109
  9. Itoigawa, M., Takeya, K. and Furukawa, H. 1991. Cardiotonic action of plumbagin on guinea-pig papillary muscle. Planta Med. 57:317-319 https://doi.org/10.1055/s-2006-960106
  10. Juniper, B. E., Robins, R. J. and Joel, D. M. 1989. The Carnivorous Plants. Academic Press, London
  11. Komaraiah, P., Jogeswar, G, Naga Amrutha, R., Sri Laxmi, P., Lavanya, B., Rama Krishna, S. V. and Kavi Kishor, P. B. 2003. Influence of hormones and selection of stable cell lines of Plumbago rosea for accumulation of plumbagin. J. Plant Biotechnol. 5:181-185
  12. Kubo, I., Taniguchi, M., Chapya, A. and Tsujimoto, K. 1980. An insect antifeedant and antimicrobial agent from Plumbago capensis. Planta Med. Suppl. 185-187
  13. Lee, C. H., Lee, H. J., Jeon, J. H. and Lee, H. S. 2005. In vivo antifungal effects of Coptis japonica root-derived isoquinoline alkaloids against phytopathogenic fungi. J. Microbiol. Biotechnol. 15:1402-1407
  14. Lee, C. H. and Lee, H. S. 2005. Antifungal property of dihydroxy-anthraquinones against phytopathogenic fungi. J. Microbiol. Biotechnol. 15:442-446
  15. Likhitwitayawuid, K., Kaewamatawong, R., Ruangrungsi, N. and Krungkrai, J. 1998. Antimalarial naphthoquinones from Nepenthes thorelii. Planta Med. 64:237-241 https://doi.org/10.1055/s-2006-957417
  16. Meazza, G, Dayan, F. E. and Wedge, D. E. 2003. Activity of quinones on Colletotrichum species. J. Agric. Food Chem. 51:3824-3828 https://doi.org/10.1021/jf0343229
  17. Paiva, S. R., Figueiredo, M. R., Aragao, T. V. and Kaplan, M. A. C. 2003. Antimicrobial activity in vitro of plumbagin isolated from Plumbago species. Mem. Inst. Oswaldo Cruz. 98:959-961 https://doi.org/10.1590/S0074-02762003000700017
  18. Parimara, R. and Sachdanandam, P. 1993. Effect of plumbagin on some glucose metabolizing enzymes studied in rats in experimental hepatoma. Mol. Cell. Biochem. 12:59-63
  19. Rischer, H., Hamm, A. and Bringmann, G. 2002. Nepenthes insignis uses a $C_2$-portion of the carbon skeleton of L-alanine acquired via carnivorous organs, to build up the allelochemical plumbagin. Phytochemistry 59:603-609 https://doi.org/10.1016/S0031-9422(02)00003-1

Cited by

  1. Phytotoxic, antifungal activities and acute toxicity studies of the crude extract and compounds fromDiospyros canaliculata vol.25, pp.7, 2011, https://doi.org/10.1080/14786419.2010.531392
  2. Determination of Plumbagin in Plant Extracts and Polyherbal Formulations by High-Performance Liquid Chromatography with Fluorescence Detection vol.48, pp.18, 2015, https://doi.org/10.1080/00032719.2015.1052973
  3. Synthesis and biological evaluation of substituted α- and β-2,3-dihydrofuran naphthoquinones as potent anticandidal agents vol.1, pp.3, 2010, https://doi.org/10.1039/c0md00074d
  4. Synthesis and anticancer activity of some novel 5,6-fused hybrids of juglone based 1,4-naphthoquinones vol.83, 2014, https://doi.org/10.1016/j.ejmech.2014.06.012
  5. Insecticidal activities of a Diospyros kaki root-isolated constituent and its derivatives against Nilaparvata lugens and Laodelphax striatellus vol.14, pp.4, 2011, https://doi.org/10.1016/j.aspen.2011.07.005
  6. Carnivorous Plants as a Source of Potent Bioactive Compound: Naphthoquinones vol.9, pp.4, 2016, https://doi.org/10.1007/s12042-016-9177-0
  7. Induced production of antifungal naphthoquinones in the pitchers of the carnivorous plant Nepenthes khasiana vol.61, pp.3, 2010, https://doi.org/10.1093/jxb/erp359
  8. Distribution of naphthoquinones, plumbagin, droserone, and 5-O-methyl droserone in chitin-induced and uninduced Nepenthes khasiana: molecular events in prey capture vol.62, pp.15, 2011, https://doi.org/10.1093/jxb/err219
  9. Bioactivity-guided isolation and structural characterization of the antifungal compound, plumbagin, fromNepenthes gracilis vol.52, pp.12, 2014, https://doi.org/10.3109/13880209.2014.902083
  10. Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants vol.3, 2016, https://doi.org/10.1038/hortres.2016.46