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Accommodation Rule Based on Navigation Accuracy for Double
Faults in Redundant Inertial Sensor Systems

Cheol-Kwan Yang and Duk-Sun Shim*

Abstract: This paper considers a fault accommodation problem for inertial navigation systems
(INS) that have redundant inertial sensors such as gyroscopes and accelerometers. It is well-
known that the more sensors are used, the smaller the navigation error of INS is, which means
that the error covariance of the position estimate becomes less. Thus, when it is decided that
double faults occur in the inertial sensors due to fault detection and isolation (FDI), it is
necessary to decide whether the faulty sensors should be excluded or not. A new accommodation
rule for double faults is proposed based on the error covariance of triad-solution of redundant
inertial sensors, which is related to the navigation accuracy of INS. The proposed
accommodation rule provides decision rules to determine which sensors should be excluded
among faulty sensors. Monte Carlo simulation is performed for dodecahedron configuration, in
which case the proposed accommodation rule can be drawn in the decision space of the two-
dimensional Cartesian coordinate system.
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sensors, parity equation.

1. INTRODUCTION

Today all sorts of control, navigation and
communication systems consist of various subsystems
and thus the hardware and software structure of those
systems are complicated. Therefore the importance of
reliability of the whole system has been increased.
The reliability of the whole system can be obtained by
the fault detection and isolation (FDI) method and
fault accommodation after FDI. FDI methods have
been studied from the 1960’s in various engineering
problem areas. As reported in literature such as survey
papers [1,2] and books [3,4], various methods of FDI
have been studied and applied in diverse applications.

FDI algorithms are designed to use all redundant
information of the plant and sensors. Redundancy is
broadly classified as hardware redundancy [5-12] and
analytic redundancy [4,13-16]. With hardware
redundancy, more than the minimum number of
sensors is used. For example, two or more sensors are
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used for scalar variables, and four or more for vector
variables. Inertial navigation systems (INS) use
basically three accelerometers and gyroscopes to
calculate navigation information such as position,
velocity and attitude. To obtain reliability and to
enhance navigation accuracy, INS may use redundant
sensors. Numerous studies on FDI for redundant
sensors have been performed so far. There are many
papers for FDI such as look-up table [5], squared error
(SE) method [5], generalized likelihood test (GLT)
method [6] and optimal parity test (OPT) method [7]
for hardware redundancy.

With analytical redundancy, additional information
is obtained from a system’s mathematical model. This
type of redundancy is based on the idea that inherent
redundancy exists in the dynamic relationship
between inputs and outputs of the system model.
Analytical redundancy has been studied in many
applications such as aerospace systems, public
transportation vehicles, and nuclear power plants.
Frank has reviewed the state-of-the-art FDI in
automatic processes by using analytical redundancy
[15], and Betta et al. reviewed several analytical
redundancy-based techniques [2].

One way of detecting a fault is to fix a fault
threshold, and if the fault estimate is greater than the
threshold, it is determined that a fault has occurred.
One typical way to obtain a fault threshold is by using
the probability of false alarm. Measurement noise is
usually assumed as white Gaussian. If there is no fault,
then the probability density function of the fault
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estimate has Gaussian distribution. Thus if the
probability of false alarm is given, the corresponding
fault threshold can be determined. [17] determines a
fault threshold using both false alarm in the absence
of fault and miss detection in the presence of fault.
[18] suggests a new accommodation threshold based
on the error covariance of an estimated variable,
which is related to the navigation accuracy of INS.
The more sensors are used, the better the navigation
performance of INS is, which means that the error
covariance of the position estimate becomes less.
Thus when INS uses redundant inertial sensors it may
happen that even though there is a fault, the faulty
sensor should be used so as not to lose the navigation
accuracy of INS. The accommodation threshold gives
a decision rule to determine whether a faulty sensor
should be excluded or not. If a fault is less than the
accommodation threshold, it is said to be a tolerable
fault and should not be excluded. If the fault is greater
than the accommodation threshold, it is said to be a
non-tolerable fault and should be excluded.

This paper suggests a new accommodation rule for
double fauits in redundant inertial sensors, while [18]
suggests an accommodation threshold for a single
fault in redundant inertial sensors. So far there are no
results for the accommodation rule for the double fault
case in the literature. For the double fault case, the
accommodation rule is given as a region in the two-
dimensional space, while the accommodation rule is
given as a threshold for the single fault case.

2. FAULT DETECTION, ISOLATION, AND
ACCOMMODATION (FDIA)

Consider a typical measurement equation for
redundant inertial sensors.

m(t) = Hx(t) + f(1) + (), (D
where
m(t) =[my my--- mn]T € R": inertial sensor measure-
ment,
H= [hl hn]T 1 nx3 measurement matrix with rank
(H')3,

x(t)e R: triad-solution(acceleration or angular rate),

f@&=[f f fn]T e R": fault vector,

e(t)~N(0,,0{,): ameasurement noise vector, normal

distribution (white noise),
N(x,y): Gaussian probability density function with

mean x and standard deviation y.
A parity vector p(¢) is obtained using a matrix ¥
as follows:

p(O=Vm(t) =V () +V &), )

i Redundant | Fault Detection and Isolation | Accommodation !
e T Teast ¥ A0 |
| Gyro [AlY Y Aby |

i Compensation

Ad

L5772 ]

AV Accel.
g Compensation

Accel.

FDI and Accommodation for INS with
redundant sensors.

where the matrix J satisfies

VH =0V eR"™") and VW7 =1,V =[w v, v,].
3

Algorithms to obtain the matrix ¥ above can be
found in the literature [5-7].

Terminology definition is given as follows [14].

Fault detection: the indication that something is
going wrong in the system.

Fault isolation: the determination of the exact
location of the fault.

Fault identification: the determination of the size
and type or nature of the fault.

Fault accommodation: the reconfiguration of the
system using healthy components.

Fig. 1 shows the block diagram of the FDIA (fault
detection, isolation and accommodation) procedure in
inertial navigation systems. From the sensor
measurement, a parity equation is generated, and
FDIA is performed. Triad solutions are calculated by
the least square method and entered into the
navigation equations. The navigation accuracy
depends on the estimation error of the triad solutions,
i.e., acceleration or angular rate.

In this paper only fault
considered.

Three assumptions are made as follows.

Assumption 1: Any three sensors are not on the
same plane.

Assumption 2: All sensors have the same noise
characteristics, i.e., same standard deviation o of
white Gaussian noise.

Assumption 3: Fault detection, isolation, and
identification are performed in advance.

accommodation is

3. ACCOMMODATION RULE FOR SINGLE
FAULT BASED ON SYSTEM
PERFORMANCE

Consider measurement equation (4) the same as (1).
m=Hx+ f+e, €~ N(0,,cl)) @)

Triad solution %=[%, X, fcz]T in Fig. 1, which is

acceleration or angular rate, can be obtained by the
least square method as follows:
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2O =H"HY ' H m(r). (5)

Define estimation error of x(¢) as e(t)=x(r) -
x(¢). Navigation solution such as position, velocity,
and attitude is calculated from x(¢). Thus the
navigation accuracy of INS depends on the error
covariance C(f) = E[e(t)e(t)r].

Consider two matrices C_;(f) and C_;(f) given
below

C.(t) = f@ HTH)Y 'mh] (HTH)™!

(6)
+o2(HTH),
C_i () = E[G_; (1) — x(0))&_; (£) - x() ]
2 T -1 (7)
=’ (H'W,H)™,

where matrices C,; and C_; denote the covariance

of X including and excluding the i-th sensor

respectively and W, is a nxn diagonal matrix with

(i,i) component set to 0 and the other components

set to 1.

Lemma 1 [18]: Suppose that i-th sensor has fault.
For (6) and (7), the following two inequalities are
equivalent:

VO
“Vi“z
i) C,;(-C_;(H<0,

where ¢ and v, are standard deviation of sensor
noise and i-th column of V matrix, which satisfies (3).
And |£(0)] == & C,i() = C(0). 0
v "2
Lemma 1 implies that when the magnitude of i-th
fault is less than 0/”v,-||2, the error covariance of
estimate % including i-th sensor is less than the error
covariance of estimate X excluding it, thus the i-th
faulty sensor should be used despite its fault to
improve the navigation accuracy. From Lemma 1, we
have the exclusion threshold cs/"v,‘“2 as an

accommodation rule.
4. ACCOMMODATION RULE FOR DOUBLE

FAULTS BASED ON SYSTEM
PERFORMANCE

In this section we propose a new accommodation
rule for double faults in redundant sensors.

4.1. Navigation performance analysis
For (1), suppose that double faults f; and fJ

occur, which means that f(£)=[0--- f; 0---f; 0---17.

To analyze the navigation performance, the error
covariance of triad solution X(¢) needs to be
calculated. The covariance matrices are defined as
follows. Matrix C,;, ; denotes the error covariance
of x(#) including i-th and j-th sensor outputs, and

C_;_; the error covariance of x(t) excluding i-th

and j-th sensors, and soon for C_,,; and C,,_;.
4.1.1 Covariance matrix C+,~+j

The error for x(¢) can be calculated as follows
Rogpg—x=WTH) Sl fih+H e}, (8)

A n A n T
where Xpiwj = [Xpax Xy Xpazl
Then the estimation error of x can be described as the
error covariance matrix C,;,; in(9)

Criny = E| Gairj = 1) Gagyy =) |
=oH HY ' +H H)! [hi hj] (9)
Ay

| , HTHY .
Ll S Lk

4.1.2 Covariance matrix C_;_ j

The error for X can be calculated as follows

. _ogT -1 2T
R, j-x=H"W; 1) H'Wye, (10)

—~1

where %, =[x_, x_, )Z,AZ]T and W; is a
diagonal matrix with diagonal elements of 1 except
(i,i) component and (jj) component which
components are 0.

Then the estimation error of X can be described as
the error covariance matrix C_;_; in (11).

Cpj= E[(ﬁ—i—j =x) (imy — x)T]

2
= HTHY '+ %(HTH)‘I [ k] (1)
ij

Wil v,y {hiT}(HT HY™,

T 2 Fa
—vi v, iz hj

2 2 2 2 2.2
where Dy, =yl vl = (v.v;) =il 1,2 sin

6; and 6; is the angle between two vectors v
and v;, which are column vectors of matrix V' defined
in (3).
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4.1.3 Covariance matrix C_;, ;

The error for X can be calculated as follows
Xy, —x=HWHY H'W, (V£ +e), (12)

where X ;=[%,, %, )”c_+Z]T and Vg =[0--
010 0] eR™ with j-th component of 1, which
results in HTWiVFj =h;.

Then the estimation error of X can be described as

the error covariance matrix C_, ; in(13)

Coivj = fH W, HY 'hon T H W, H)
+o’H W, H)™!

=S ETW HY T ETW Y

2
+o?HTHY ! + 2 (HTHY W (HTHY .

Viil2
(13)

4.2. Accommodation rule for double faults

In this section three theorems can be obtained from
the results of Section 4.1, which provide accommod-
ation rules for double faults.

Theorem 2: Consider the measurement equation
(1) and the triad solution (5), and suppose that i-th and
j-th sensors have faults. For the two estimation error
covariance matrices (9) and (11), the following two
inequalities are equivalent:

) w(Cpy ) <tr(C_i_j)
where tr( * ) denotes the trace of a matrix.
i) SANETHY G+ fINETHY Byl + 24,
<H"H)Y b, (HTHY 'R, > <,
(14)

where <, > denotes an inner product and

NAETHEY B AR +IEHTHY 1yl (v li3 —
{i=0o

1 D,
y=2<H"H)Y 'h;,(H HY 'h;> <v,,v; >.
Proof: First we have
tr(C.is ) = ElGrsr — %) 1+ E[Ry o) = x,)7]
+ Bl —x,)7)]
and
r(Ci_p) = G, — %"+ IR, - x,)°]
+E[G__, -x,)°].

Define A and B as follows

W
| T -1 T -1
A=| " (HTHY (HTH) [h,. h |
L™/
I HY Bl
<@ HY 'h, H"HY R >

<H"HY 'h, HTHY B, >
IETHY 1,5

and
, olvlB Py Lo
1 Dij iJj Djj
B= 2. T 2 2
o vy o7 [lvill2
fify+—— fi -
H D,j ’ Dij
Then #r(C,;,; —C;_;)=tr(AB)<0 gives the follow-

ing inequality with long manipulation.
SAETEY B + AT HY )
+2fif; <HTHY ' (HTH)Y 'h; >
o T HY BBl 13+HIET HY R B IvE -

Dy

(

U
Remark 1: Theorem 2 means that if faults f; and

]
fj occur, and the magnitudes of the two faults satisfy

(14) located inside an ellipse, then the corresponding
faulty sensors should not be excluded to obtain less
estimation error by using them.

Theorem 3: Consider the measurement equation
(1) and the triad solution (5), and suppose that i-th and
J-th sensors have faults. For the two estimation error
covariance matrices (11) and (13), the following two
inequalities are equivalent:

) r(C_yy;)<wr(Cj)
i) £} <y, (15)
where (, _rd and
tr(B)
2 T
a1 vl —v;'w

Dy v v, villa

T

R | lvilla

T -1 T T -1
B=H"wW, H) 'h;h,” (W, HY"
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Proof: The proof has the same procedure as
Theorem 2. O
Remark 2: Theorem 3 means that even though
faults f; and f; are located outside the ellipse in

(14) and |f; | <|f;l, if (15) is satisfied, then the j-th

sensor should not be excluded since less estimation
error can be obtained by using j-th sensor.

Theorem 4: Consider the measurement equation
(1) and the triad solution (5), and suppose that i-th and
j-th sensors have faults. For the two estimation error
covariance matrices (9) and (13), the following two
inequalities are equivalent:

i) 1(Ciy ) <tr(Cyyy )
L T HY  m G- E W HY 15}

e 2
i) f7+f; T
2fif; <@ HY o (HTHY 'y > o7
" T 17 12 > 7
I(H" H) kil llvi 112
(16)

Proof: From (9) and (13), #(C_

can be calculated easily as follows

) and t”(C+i+j)

i+j

tr(C_iy )= P IHTWH)Y 1|5 + or((HTHY ™)

02

+ ——|(HTH)Y 'Ry,

2
Villz

1r(Cura ) = FANHTHY RIB + £2NEHTHY 1y R
21, f; < T HY by, (HTHY ;>
+clor(HTHY Y.

By calculating r(C_;, ;) —#r(C,;, ;) <0, inequality

(16) can be obtained. O
Remark 3: Theorem 4 means that even though

faults f; and fJ satisfy (14), located inside the
ellipse, and |f; [ <[f;|, if (16) is satisfied, then i-th

sensor should be excluded since less estimation error
can be obtained by its exclusion.

According to the results of Theorem 2 through
Theorem 4, double faults can be categorized into four
groups.

Category I: When double faults satisfy the follow-
ing three inequalities

D) SAIETEY RIG+ £ANETHY 1
21 f; <H HY ', (H HY 'R, > <

S IEHTHY 5= T WH) 113
T HY 'yl

i) f7+f;

21 f; <H Y ", (HTHY 'hy > 2
+ <
" HY |3

2
v 112

i) |f; 1</

The two faulty sensors should not be excluded.
Category II: When double faults satisfy the
following three inequalities

D) ANETHY G+ PN HY )b
2ff; <HTHY 'h,HTHY h > <
S T HY I W ) Ry 5

.. 2
i) fi7+f; -
b IHTHY 1y 3
2fif; <H HY ', (HTHY 'y > 52
t— T iy 2 = 2
(H" H) hi||2 “Vi ”2
i) If; | <1 £l

The i-th sensor should be excluded, but not for the
j-th sensor.

Category III: When double faults satisfy the
following three inequalities

i) ANETHY G+ P IETHY b
121 f; <EHHY by, (HTHY 'hy >2 ¢
i) f7<(,
i) [f;1<1f].
The i-th sensor should be excluded, but not for the
j-th sensor.
Category IV: When double faults satisfy the
following three inequalities
D RIETE R + AT E)
+2ff; <H H) ' (HTH)Y 'h; >2
i) f7 24
i) [ f;1 <Al
The two faulty sensors should be excluded.

Remark 4: For the 4 categories above, we consider
only half of the first quadrant in two dimensional

space. i.e., 0<0< % It can be noticed that
Category II and Category III give the same result.

4.3 Accommodation rule for double faults with
dodecahedron configuration

In order to show the decision rule for a real

configuration for redundant inertial sensors, we use

the symmetric dodecahedron configuration as shown

in Fig. 2, which uses 6 sensors. In this case the
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Fig. 2. Dodecahedron configuration with 6 identical
Sensors.

measurement matrix and parity matrix have the
following relations.

1
V2

The angles 6; between direction cosine vectors A

HTH:213, Wl =1, vl =—=(i=1,2,---,6)

of 6 sensors are 63.4° and 116.6°. So are angles of
parity vectors. Thus, sinzﬁij = sin?‘é’lj =0.8 and coszgij

= coszé,-j =0.2 always hold.

Inequalities (14)-(16) become (17)-(19) for the
dodecahedron configuration.

Table 1. Four categories of double faults with
dodecahedron configuration (0<0<x/4

region only, o: use, X :exclusion).

i-th | j-th
faulty | faulty
sensor| sensor

Cate
gory

Conditions

2 2 2

f7+0.8944f 1, + f7 <607,
3

I f,-z—gsz+0.8944f,-fj <2%,| o | o

il <l
f7 4089441, f; + f] <607,

il ﬁz—gf}+o.8944ﬁszzoz, x | o
NG

f7+08944f,f; + f} > 607,
m ||f;]<1.58110, x | o
NY

f7+08944f, 1, + f} > 607,
v ||f]z158110, x | x
7] <\Al

fj Koo
35
3 i )
L /" Category IV
+Hi s -i-j
2.5k ;
"\\% ,’/
2 e £ =1.5811
Hisj BN /
1.5} Y
X
| L O89UES +E] = 6
T R | ) 2
b St +0‘8944f5f1-1:~ff =2
L £Y
0.5 " Category I\ Category 1 *\ Category 11
S+ 44 N
0 L 1 Il i i Xy i i f

0 05 1 s 2 25 3 35 1

Fig. 3. Decision rule for exclusion of faulty sensors
for the dodecahedron configuration (For
m4<0< /2 region, i and j should be
interchanged in Table 1).

f2+0.8944ff; + 2 <607, (17)
|>1.58110, (18
J

£2 —%ff +0.8944f, f; > 20°. (19)

We can obtain Table 1 for the symmetric
dodecahedron configuration summarizing the above
observation. Table 1 can be plotted in a two-
dimensional plane as in Fig. 3.

Remark 5: Table 1 is considered only for
0<@<xm/4 region in the first quadrant. We need to
interchange i and j for 7/4<8<x/2 region. In Fig.

3, the ellipse f;> + 0.8944f, f; + sz =602 does not

contribute to the decision rule. However, it does in the
second and fourth quadrants.

5. SIMULATIONS

In this section, Monte Carlo simulations are
performed 10,000 times for each fault to confirm the
accommodation rule for single fault case and double
fault case, respectively. Six identical sensors are used
with dodecahedron configuration [19] as in Fig. 2.

The measurement matrices H and V satisfying

VH =0 and VVT =1can be obtained as follows:

0.5257 -0.5257 0.8507
H= 0 0 0.5257
0.8507 0.8507 0
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0.8507 0 o T
~0.5257 0.8507 0.8507 | ,
0 05257 -0.5257
03717 03717 0
V=|-06015 0.6015 03717
0 0  -0.6015
0  —0.6015 0.6015
03717 0 0 |, 0)
0.6015 03717 03717
where [y || =[lvy]|= = v = 172.

Consider the simulation for the single fault case.
We assume that first sensor has a fault like

f(@)= [fl(t) 0--- O]T , and the fault f(r) is a bias,
and the measurement noise is white Gaussian with
mean 0 and variance o =1. The exclusion threshold

stated in Lemma 1 is Th =\/§c for the matrix V
obtained above.

Fig. 4 is the Monte Carlo simulation result of the
single fault case showing trace(C, ((¢)) and trace
(C_i(#)). Horizontal axis denotes the fault size to
noise ratio (F/N ratio), and the vertical axis denotes
the magnitudes of trace(C,((¢)) and trace(C_;(¢)).

When fault signal f£(¢) is greater than V26, the
inequality trace(C,(t)) > trace(C_;(¢)) holds. This
inequality, which is consistent with Lemma 1, means
that when a fault size is greater than V20, the faulty

sensor should be excluded to provide less error
covariance of x(¢). The exclusion of the faulty

sensor will result in superior navigation accuracy.
For the double fault case, we assume that the first

o |-e-trace(C, )
5 fewtrace(CY)

~
T

(=2
T

w
T
‘

~
T
{

w2

The trace of error covariance

3%

Bt ot 96 N S R e o g i R e B e K g M

—
T

0 ; : ; : ; ; ; ;
0 05 L J2 2 25 3 35 4 45 5
Fault{Bias) size to noise ratio[F/N]

Fig. 4. Trace(C,,(#)) and trace(C_;(¢)) with respect
to F/N ratio.

4
35

3

25

00 0.5

L A} L L oy
MK 2 PEIN3 35 'fl

Fig. 5. Decision rule for exclusion of faulty sensors
and the relation of two fault magnitudes for
simulation.

| -trace(LH” ........... .l?:

— . — trace(C_,,, ) //
trace(C__ ) - n" -4

th N N @ O

IS

The trace of error covariance

- W

=

Y 1.3041 /I

Fault size of number 1 sensor [F/N]

Fig. 6. trace(C,(,,(r)), trace(C_j,,(?)) and trace
(C_jo(8)) with respect to fault magnitude.

and second sensors have fault like f(£)=[f f, O

0 0 0]", and the faults fi and f, are constants

and satisfy the straight line as Fig. 5, and the
measurement noise is white Gaussian with mean 0 and
variance o =1.

Fig. 6 shows the results of the accommodation rule
for double faults according to the fault size in Fig. 5.

When fault f; and f, belong to the region of
Category I, the trace of C,;,, is the minimum
among three traces. When fault £, and f, belong
to that of Category II and III, the trace of C_j,, is

the minimum, and to the Category IV, the trace of
C_y_, is the minimum.

6. CONCLUSIONS

We consider a fault accommodation problem for
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redundant inertial sensor systems depending on
navigation accuracy and propose a new
accommodation rule for the double fault case. The
accommodation rule can be drawn in two-dimensional
decision space. Monte-Carlo simulation has been
performed for dodecahedron configuration to confirm
the improvement of the navigation accuracy for the
single and double fault cases. The accommodation
rule can be applied to any configurations and any
number of sensors.
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