DOI QR코드

DOI QR Code

NEW RELATIONSHIPS INVOLVING THE MEAN CURVATURE OF SLANT SUBMANIFOLDS IN S-SPACE-FORMS

  • Fernandez, Luis M. (DEPARTMENT OF GEOMETRY AND TOPOLOGY FACULTY OF MATHEMATICS UNIVERSITY OF SEVILLA) ;
  • Hans-Uber, Maria Belen (DEPARTMENT OF GEOMETRY AND TOPOLOGY FACULTY OF MATHEMATICS UNIVERSITY OF SEVILLA)
  • Published : 2007.05.31

Abstract

Relationships between the Ricci curvature and the squared mean curvature and between the shape operator associated with the mean curvature vector and the sectional curvature function for slant submanifolds of an S-space-form are proved, particularizing them to invariant and anti-invariant submanifolds tangent to the structure vector fields.

Keywords

References

  1. D. E. Blair, Geometry of manifolds with structuml group U(n) x O(s), J. Differential Geometry 4 (1970), 155-167 https://doi.org/10.4310/jdg/1214429380
  2. J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, and M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasg. Math. J. 42 (2000), no. 1, 125-138 https://doi.org/10.1017/S0017089500010156
  3. A. Carriazo, New developments in slant sub manifolds theory, Applicable Mathematics in the Golden Age (Edited by J. C. Misra), 339-356, Narosa Publishing House (New Delhi, 2002)
  4. A. Carriazo, L. M. Fernandez, and M. B. Hans-Uber, B. Y. Chen's inequality for sspace-forms: applications to slant immersions, Indian J. Pure Appl. Math. 34 (2003), no. 9, 1287-1298
  5. A. Carriazo, L. M. Fernandez, and M. B. Hans-Uber, Minimal slant submanifolds of the smallest dimension in S-manifolds, Rev. Mat. lberoamericana 21 (2005), no. 1, 47-66
  6. A. Carriazo, L. M. Fernandez, and M. B. Hans-Uber, Some slant submanifolds of S-manifolds, Acta Math. Hungar. 107 (2005), no. 4, 267-285 https://doi.org/10.1007/s10474-005-0195-x
  7. B.-Y. Chen, Mean curvature and shape opemtor of isometric immersions in real-spaceforms, Glasgow Math. J. 38 (1996), no. 1, 87-97 https://doi.org/10.1017/S001708950003130X
  8. B.-Y. Chen, Relations between Ricci curvature and shape opemtor for sub manifolds with arbitmry codimensions, Glasg. Math. J. 41 (1999), no. 1, 33-41 https://doi.org/10.1017/S0017089599970271
  9. B.-Y. Chen, Slant immersions, Bull. Austral. Math. Soc. 41 (1990), no. 1, 135-147 https://doi.org/10.1017/S0004972700017925
  10. I. Hasegawa, y. Okuyama, and T. Abe, On p-th Sasakian manifolds, J. Hokkaido Univ. Ed. Sect. II A 37 (1986), no. 1, 1-16
  11. M. Kobayashi and S. Tsuchiya, Invariant submanifolds of an f-manifold with complemented fmmes, Kodai Math. Sem. Rep. 24 (1972), 430-450 https://doi.org/10.2996/kmj/1138846636
  12. A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 39 (1996), 183-198
  13. L. Ornea, Generic CR-submanifolds in S-manifolds, Stud. Cere. Mat. 36 (1984), no. 5, 435-443
  14. M. M. Tripathi, J.-S. Kim, and S.-B. Kim, Mean curvature and shape opemtor of slant immersions in a Sasakian space form, Balkan J. Geom. Appl. 7 (2002), no. 1, 101-111

Cited by

  1. RICCI CURVATURE OF SUBMANIFOLDS OF AN S-SPACE FORM vol.46, pp.5, 2009, https://doi.org/10.4134/BKMS.2009.46.5.979
  2. On Chen invariants and inequalities in quaternionic geometry vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-66