DOI QR코드

DOI QR Code

A REFINEMENT OF THE CLASSICAL CLIFFORD INEQUALITY

  • Iliev, Hristo (DEPARTMENT OF MATHEMATICS SEOUL NATIONAL UNIVERSITY)
  • Published : 2007.05.31

Abstract

We offer a refinement of the classical Clifford inequality about special linear series on smooth irreducible complex curves. Namely, we prove about curves of genus g and odd gonality at least 5 that for any linear series $g^r_d$ with $d{\leq}g+1$, the inequality $3r{\leq}d$ holds, except in a few sporadic cases. Further, we show that the dimension of the set of curves in the moduli space for which there exists a linear series $g^r_d$ with d<3r for $d{\leq}g+l,\;0{\leq}l{\leq}\frac{g}{2}-3$, is bounded by $2g-1+\frac{1}{3}(g+2l+1)$.

Keywords

References

  1. E. Arbarello and M. Cornalba, Su una congetura di Petri, Comment. Math. Relv. 56 (1981), no. 1, 1-38 https://doi.org/10.1007/BF02566195
  2. E. Arbarello and M. Cornalba, A few remarks about the variety of irreducible plane curves of given degree and genus, Ann. Sci. Ecole. Norm. Sup. (4) 16 (1983), no. 3, 467-488 https://doi.org/10.24033/asens.1456
  3. E. Arbarello and M. Cornalba, P. Griffiths, and J. Rarris, Geometry of algebraic curves Vol. I, Grundlehren der Mathematischen Wissenschaften, 267, Springer Verlag, 1985
  4. E. Ballico and C. Keem, Clifford index of smooth algebraic curves of odd gonality with big $W^{r}_{d}$(C), Osaka J. Math. 39 (2002), no. 2, 283-292
  5. C. Ciliberto, On the Hilbert scheme of curves of maximal genus in a projective space, Math. Z. 194 (1987), no. 3, 351-363 https://doi.org/10.1007/BF01162242
  6. M. Coppens and G. Martens, Secant spaces and Clifford's theorem, Compositio Math. 78 (1991), no. 2, 193-212
  7. M. Coppens and G. Martens, Linear series on 4-gonal curves, Math. Nachr. 213 (2000), 35-55 https://doi.org/10.1002/(SICI)1522-2616(200005)213:1<35::AID-MANA35>3.0.CO;2-Z
  8. A. Dolcetti, Subcanonical, Gorenstein and complete intersection curves on del Pezzo surfaces, Ann. Univ. Ferrara Sez. VII (N.S.) 47 (2001), 231-241
  9. L. Ein, The irreducibility of the Hilbert scheme of smooth space curves, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 83-87, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987
  10. D. Eisenbud, Linear sections of determinantal varieties, Amer. J. Math. 110 (1988), no. 3, 541-575 https://doi.org/10.2307/2374622
  11. P. Griffiths and J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, John Wiley and Sons, New York, 1978
  12. J. Harris, Curves in projective space, Seminaire de mathematiques superieures 85 Univ. Montreal 1982
  13. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52. SpringerVerlag, New York-Heidelberg, 1977
  14. R. Hartshorne, Genre de courbes algebriques dans l'espace projectif (d'apres L. Gruson et C. Peskine), Asterisque 92-93 (1982), 301-313
  15. H. Iliev, On the irreducibility of the Hilbert scheme of space curves, Proc. Amer. Math. Soc. (to appear)
  16. T. Kato, Martens' dimension theorem for curves of even gonality, J. Korean Math. Soc. 39 (2002), no. 5, 665-680 https://doi.org/10.4134/JKMS.2002.39.5.665
  17. C. Keem and S. Kim, Irreducibility of a subscheme of the Hilbert scheme of complex space curves, J. Algebra 145 (1992), no. 1, 240-248 https://doi.org/10.1016/0021-8693(92)90190-W
  18. H. Lange, Moduli spaces of algebraic curves with rational maps, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 2, 283-292 https://doi.org/10.1017/S0305004100051689
  19. G. Martens, On curves of odd gonality, Arch. Math. (Basel) 67 (1996), no. 1, 80-88 https://doi.org/10.1007/BF01196170
  20. N. Mestrano and S. Ramanan, Poincare bundles for families of curves, J. Reine Angew. Math. 362 (1985), 169-178
  21. C. Segre, Recherches generales sur les courbes et les surfaces reglees algebriques I., Math.Ann. 30 (1887), no. 2, 203-226 https://doi.org/10.1007/BF01450068
  22. C. Segre, Recherches generales sur les courbes et les surfaces reglees algebriques I., Math.Ann. 34 (1889), no. 1, 1-25 https://doi.org/10.1007/BF01446790