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Abstract

Systematic sensitivity analysis of smoothed particle hydrodynamics method (SPH), a
gridless Lagrangian particle method, was carried out in this study. Unlike traditional grid-
based numerical schemes, systematic sensitivity study for computational parameters is
very limited for SPH. In this study, the effect of computational parameters in SPH
simulation is explored through two-dimensional dam-breaking and sloshing problem. The
parameters to be considered are the speed of sound, the type of kernel function, the
frequency of density re-initialization, particle number, smoothing length and pressure
extraction method. Through a series of numerical test, detailed information was obtained
about how SPH solution can be more stabilized and improved by adjusting computational
parameters.
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1 Introduction

Since its first application to astrophysics problems in 1977 by Lucy, Gingold and
Monaghan, the smoothed particle hydrodynamics method (SPH) steadily has been
extended its field to various physical problems from large-deformation solid mechanics to
compressible/incompressible fluid dynamics. Lucy et al. created a method based on the
concept of particle-in-cell (PIC), where convection is handled by particles in cell whereas
pressure field by finite difference scheme. What makes SPH different from PIC is that
pressure in SPH is estimated by interpolating a state variable defined at each particle.
Particles are accelerated or decelerated by pressure gradients which are obtained by
differentiating so called smoothing function or kernel function. Each moving particle
carries this kernel function with it, and whole computational domain is interpolated by
summing up the physical quantity of neighboring particles with proper weighting factors.
There are many benefits that can be obtained by using SPH in hydrodynamic problems,
especially when violent free surface is of primary concern. Since SPH is pure Lagrangian
approach, there is no need for additional treatment for free surface reconstruction. Unlike
Eulerian methods that free-surface capturing work is relatively difficult, working in
Lagrangian frame is naturally suited for capturing evolution of free boundary or surface
without any additional cost. In some aspects, SPH resembles finite element method (FEM)
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in that both numerical methods require a proper interpolation of state variable to handle
continuum media. Domain interpolation in FEM is based on the node along with its
connectivity definition which is called element. However, domain interpolation in SPH
does not require connectivity information since interpolation is made based on the particles
inside certain sub-domain, i.e. compact support. This leads to the advantages of SPH over
FEM that particle can freely move in Lagrangian way without the termination of analysis,
though there are some loss of interpolation accuracy, e.g. the loss of partition of unity
property. Unlike grid methods, SPH does not produce any large algebraic equation in
solving the governing equation. Because the motion of fluid is represented by the motion
of corresponding particle, momentum conservation equation is directly applied to each
particle. The only thing that needs to be considered is how particles are interacting with
each other, which is realized by smoothing process.

Monaghan and Kos' contributed a lot to the extension of SPH application from
traditional astrophysics to incompressible fluid problems, such as propagation of gravity
wave. Libersky and Petschek” extended SPH to solid media where full 3D stress tensor and
strength of material need to be considered. The introduction of material strength into SPH
highlighted some fundamental shortcomings of the method such as particle inconsistency,
tensile instability and zero energy mode. By relating the tensile stress with the first
derivative of kernel function, Swegel, Hicks and Attaway’ gave a detail description in their
paper why SPH inherently suffers from instability problem. As a remedy for this tensile
instability, Monaghan® proposed the use of artificial pressure term in momentum equation
which prevents particle clumping caused by the instability. Dilts>® derived Lagrangian
SPH discrete equation by applying Galerkin procedure to the Eulerian conservation laws
and developed consistent meshless algorithm. Aforementioned tensile instability is actually
the motivation of Dilts’ work. Later on, researchers tend to focus more on the accuracy and
consistency of the interpolation itself leading to works on reproducing kernel particle
method (RKPM) or moving least quare method (MLS), which later become popular
meshless method. The original SPH method tends to be poor when particles are not
uniformly distributed, giving birth to the variety of modification or correction to the
original kernel approximation. RKPM and MLS are two major streams of such
enhancement though two are quite close to each other in terms of their basic ideas and final
forms. In this sense, SPH can be said to be the early form of the meshless methods.

In this paper, systematic parametric studies have been carried out to figure out how
each analysis parameter alters SPH simulation and its results. Some of them are relevant to
the effectiveness of simulation, some others to the accuracy improvement of SPH, and
others are to the convergence of the analysis results.

A two-dimensional dam-breaking problem was chosen as a sample problem for
sensitivity study. Dam-breaking problem contains variety of fluid motion from stable
collapse of fluid body to extremely violent free surface flow, not to speak of splash
formation and wave breaking phenomenon. The influence of the number of particles used
in the analysis was examined. The effect the number of particle has on the analysis result
must be one of the most intriguing items among others, as the effect of spatial resolution,
i.e. mesh size, in grid based method is the case. Since most SPH simulation is based on the
weakly compressible approach, where actually incompressible fluid is assumed to be
weakly compressible one, the speed of the sound is very important analysis parameter. It
also has a lot of things to do with the determination of stable time increment size as well as
particle spattering phenomenon in SPH simulation. The speed of sound was discussed in
depth through numerical test and the analysis on the momentum conservation equation.
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Periodic density reinitialization technique was originally proposed by Colagrossi’, which
improves pressure field by filtering out spikiness induced by weakly compressible
assumption. Frequency of this density reinitialization is quite influential to the
smootheness of pressure field and pressure time history. It was examined in detail how
SPH simulation results improve as the frequency of density reinitialization increases.
Finally, the type of the smoothing function and smoothing length was discussed.
Historically, the type of smoothing fucntion used in kernel approximation has been one of
the hottest topic because smoothing funciton itself is directly related to the accuracy of
interpolation and also stability issue of SPH simulation. Dam breaking problem was
analyzed with different type of smoothing fucntion and discussion was made on the
characteristics of each smoothing function.

2 Basic formulation

Whatever the numerical scheme of interest is, what should be done first is to determine
how to discretize or interpolate the whole computational domain. In SPH, a computational
domain is discretized by a number of particles which can freely move without any
connectivity among each other. Figure 1 tries to illustrate the commons and differences
between finite element (FE) interpolation and meshless interpolation.

f(x)= Zzl F(x) N,(x) f= Zn:f (x )W (x—x,)
/(%) / — fx) '/' it

Node i N\ Element i Particle
(a) Finite element interpolation (b) Meshless interpolation

Figure 1: Linear FE interpolation vs. Meshless interpolation

In the FE interpolation, as shown in Figure 1(a), constant field can be reproduced
exactly by summing up the shape function which is defined inside each element. Even if
node separates from each other due to the motion of underlying material, the way of
interpolation wouldn’t change since shape function itself expands and shrinks as element
deforms. In case of meshless interpolation, each particle carries pre-defined kernel function
(bell-shaped, in general), and constant field is reproduced by summing up all relevant
kernel function. Major difference between the two is that meshless interpolation is global
interpolation, which means that any relevant kernel function inside computational domain
participates in the interpolation process, while the FE approximation is done locally, i.e.
only shape function inside relevant element is used for the interpolation. It is obvious that
the meshless method is far better than FEM when a continuous media is handled with large
deformation in Lagrangian way, because mesh distorsion problem will never stop the
simulation.

16)= 1~ )i 0
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Eq. (1) shows how this meshless interpolation is carried out in integral sense. This
equation can be interpreted as the summation of function, f(7'), with weighting factor,
W (r —7',h), which depends on the kernel function and the distance between 7 and 7.
In a discrete form for a fluid particle with mass m; and density p;, it can be written to

f(ﬁ)zif(fj)W(ﬁ—th)% @

As mentioned above, this is the weighted average of function variables of surrounding

particles. Summation is made over the particles which are inside influencing radius, 4,
often called support domain, as shown in Figure 2(a).
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Figure 2: Particle interaction and deficiency

(a) Particle interaction

In some special cases, like particles located near the boundary of computational domain,
the situation may arise that the number of surrounding particles is not sufficient enough
causing particle deficiency problem, as shown in Figure 2(b). When this particle deficiency
problem is met, kernel approximation needs to be normalized by dividing Eq.(2) by
summation of weighting factor, as shown in Eq.(3). This is so called Shepard
interpolation(Shepard®). The Shepard interpolation guarantees the reproducibility of
constant field at most. If a field of the higher-order function is requested to be reproduced,

other correction or modification needs to be done such as RKPM or MLS, which definitely
increases computational cost.
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In most mechanical problems, governing equation requires the derivative of its state
variable. Unlike FEM, where a weak form formulation is used for the approximation of
only variable itself, SPH solves a strong form which the approximation of function
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derivative is required as well. The function derivative can be easily calculated in SPH from
the derivative of kernel function as,

I Yt @

J=1 P

Once the domain interpolation is established, the governing equation(s) should be set up
based on the discretized system. In the present study, the continuity and Euler equations,
Eq. (5) and (6), are to be focused.

dp -
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In SPH, it is common approach to treat the fluid as weakly compressible one even
though it is almost incompressible. This approach was firstly tried by Monaghan’ in SPH
framework ending up with fairly good results provided that Mach number inside fluid
domain is small enough, generally less than 0.1. To keep this condition valid throughout
analysis, the speed of sound in fluid’s equation of state should be roughly 10 times of the
expected maximum flow velocity. This weakly compressible approach does not allow us to
force the time rate of fluid density in Eq. (5) to be zero. Eq. (5) and (6) can be transformed
into discrete forms as follows:

dp, Lo

-2 n) v, g
@:—ij %+£§—+Hij VW, + f, (8)
dt J e pj

Eq. (7) and (8) can be easily obtained by using interpolation formula of function
derivative as show in Eq. (4) along with some other mathematical procedures. I, in Eq
(8) is artificial viscosity introduced for numerical reason. When fluid is compre551ble it is
inevitable to have shocks inside the fluid domain, particularly around the region which
pressure field varies so drastically that it behaves like discontinuous flow. Numerical
problems caused by this shocks can be avoided by introducing the artificial viscosity in
momentum equation, resulting in smooth pressure field around shock. Monaghan'’
proposed a modified artificial viscosity by combining both linear and quadratic term like,
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_al_lcij¢ij+ﬁﬂ¢ij Foo¥ <0
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where
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ap and Sy are constants that determines the contribution of linear and quadratic terms
to total dissipation. Throughout this study, only the linear artificial viscosity is considered
where «; is set to be 0.03. ¢ and p mean the speed of sound and the fluid density,
respectively.

Eq. (10) is the state equation used broadly for many fluids. ¢ is the speed of sound, y is
a polytrophic constant which is normally set to be 7. As mentioned above, this weakly
compressible approach is more beneficial than truly incompressible approach in that
computationally expensive pressure-Poisson equation does not need to be solved. However,
it is well known that weakly compressible approach is responsible for the spiky pressure
field induced by extremely stiff equation of state.

4 2
p:B {ﬁ:' -1 ,B:L)Qc_ (10)
2, e

In SPH, imposing the wall boundary condition to moving particle is not simple work at all.
Most popular scheme is the ghost particle approach which imaginary ghost particles are
distributed outside the wall. The velocity and pressure of the ghost particles are mirrored
from interior particles.
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Figure 3: Ghost particle approach

Figure 3 shows how ghost particles are created and influence the motion of interior
particles. Position, velocity and pressure of the interior particles located within three times
of the size of compact support from the wall are mirrored outward to ghost particles. The
mirrored ghost particles participate in the summation process of each interior particle
whereas ghost particle itself does not evolve in time.

As shown in Eq. (7) and (8), SPH simulation is all about time marching of two state
variables, density and velocity, meaning that the spatial derivative of smoothing function is
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directly involved. Figure 4 explains why instability problem occurs in SPH simulation by
relating particle position to the first derivative of smoothing function.

w w
Stable Ap = pAW Ap = pAW'
W >0
(a) Under compression (b) Under tension

Figure 4: Instability of SPH

When fluid is under compression, which is the case of Figure 4(a), particles stay stable
while it is outside of dotted line, because, under this circumstance, pressure tends to
increase as particle approaches to neighboring one. However, once it comes into the region
inside of dotted line, it becomes unstable since pressure tends to decrease though particles
get closer with each other. This is so called compressible softening. On the other hand,
when fluid is under tension, situation becomes reversed. When particle is outside dotted
line, pressure tends to decrease as particles get closer, which means system is unstable.
However, once it gets inside dotted line it becomes stable. This is tensile instability
problem. Since particles are initially placed with the distance of %, smoothing length, it can
be easily understood that tensile instability is the primary concern, while the compressive
softening is generally not. This was systematically analyzed by Swegel et.al.’ with the
details of stability analysis. Monaghan® proposed the use of artificial repulsive force to
overcome tensile instability problem.

——Z +H +Rf ,-,-+J?,- (11
,0 ,0] '

Artificial pressure f becomes active only if either of interacting particles undergoes
tensile pressure. When both are positive, extremely small artificial pressure becomes active
to avoid local linear structure. This artificial pressure term was used in this study to avoid
tensile instability problem.

Finding neighbor particles for SPH summation is one of the most time consuming tasks
in SPH simulation. To minimize computational cost for this work, both linked-list search
and pairwise interaction algorithm were used in this study. In the linked-list algorithm,
whole computational domain is divided into many sub-cells, and particles are assigned to
the cells, later being searched only for relevant cell. The pairwise interaction algorithm is
removing extra floating point calculation by taking advantage of symmetry of governing
equation.
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3 Validation

Before directly jumping to the sensitivity analysis, validation work has been done for the
developed code. 2 dimensional dambreaking and sloshing problem were chosen as sample
problems and comparison was made between analysis results and measured experimental
data. Figure 5 shows the detail dimension of 2D dam-breaking and sloshing problem. In case
of dam breaking problem, the fluid was initially set to form a rectangle which is 0.6m high
and 1.2m wide. The tank width is 3.22m. This dimensional feature is same as the experiment
by Zhou et.al.". For sloshing problem, test model in Figure 5(b) was chosen, which is
identical to the test model studied by Van Daalen et.al."’. Varieties of filling ratio and
excitation frequency were used for the numerical analysis.

1.0
1.2 #(t) = Asin(wr)
-—p A
| h
I 0.6 05 |
) 3.22 "
(a) Dam breaking problem (b) Sloshing problem

Figure S: Sample problems (unit: meter)
An effort was made for the validation of developed numerical code through the
comparison with experimental data as well as numerical calculations done by others. Table 1

summarizes time evolution of the height and the surging front of collapsing dam.

Table 1: Evolution of dam height and surging front

) Dam height Surging front
Time
Exp.* | Monaghan | Liu | Present | Exp.* | Monaghan | Liu | Present
0.71 0.90 0.90 0.90 0.90 1.33 1.56 1.45 1.55
1.39 0.76 075 | 0.75 0.75 225 2.50 2.38 2.50
2.10 0.57 0.56 0.56 0.57 322 3.75 3.50 3.72

(* by Monaghan’, Locations normalized by its initial value, Time normalized by /HT /g

where HT,, means initial dam height)

It can be seen that analysis results from this study is in good agreement not only with
experimental result but also other SPH simulation results by Monaghan® and Liu'2.
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Flgure 6 shows SPH simulation results overlapped on experimental results(Zhou
et.al.') along with other analysis results(Colagrossi’). Wave height evolution from current
study fits experimental data pretty well before overturning wave touches free surface back
again, the moment when nondimensionalized time reaches 6.0. Wave height was measured
at the location 2.7m away from the left vertical wall. Even after violent free surface
becomes dominant in the flow, general trend is not so far from the experimental data.
Other analysis results shown in Figure 6 are that of two phase SPH, two phase FVM with
level set and BEM result. Gap between present study and others can be ascribed to the
effect of air, whose influence to fluid flow becomes larger as violent free surface flow gets
dominant. v
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Figure 6: Comparison with experimental and computational results (Zhou et al.
1999, Present study with 11,250 particles)
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Figure 7: Global roll moement & free surface profile
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2D sloshing problem was chosen as another validation sample problem. Figure 5(b)
shows experimental setup for capturing global forces induced by violent fluid flow inside the
tank. Tank was excited in harmonic way, whose motion center is located at the bottom of the
tank. Roll moement, obtained from experiment was compared with SPH simulation results as
shown in Figure 7(b). Comparison was made by exploring different filling ratio and
excitation frequency. Correspondence between numerical simulation results and experiment
is fairly good. Discrenpancy tends to increase as both filling ratio and excitation frequency
become large, which is the case of the points at upper right corner of the Figure 7(a).

4 Sensitivity analysis

In the present study, the sensitivity of computational results was widely investigated through
two-dimensional dam-breaking problem and sloshing problem which are covered in the
previous section. A parametric study was done for following items

- Number of particle

- Speed of sound

- Frequency of density re-initialization

- Type of smoothing function

- Smoothing length

- Wall pressure (Pressure extraction method)

4.1 Number of particles

Firstly, the evolution of free surface was checked for the number of particles used in the
analysis. The number of particle in SPH simulation may be comparable with the number of
grids in grid-based method. Figure 8 shows the change of free surface profile when the
number of particle is varied from 800, 1,800, 5,000 up to 20,000. Contour represents pressure
field. It is clear thai, as the number of particles increases, overall free surface profile tends to
converge to a certain shape. Little difference can be found between the results of 5,000 and
20,000.

Figure 9 shows the variation of energy for the number of particles used in the analysis.
Even though SPH simulation is that of compressible fluid, targeting physical phenomenon
is the motion of incompressible fluid. This can be approximately achieved by the use of
very stiff equation of state. Eq. (12) shows total energy decomposition into kinetic,
potential, internal and dissipation energy. Energy change in Figure 8 considers only kinetic
and potential energy among them because fluid flow in this analysis is assumed to be
inviscid and incompressible. However, it should be noticed that, due to the compressibility
and assumption and artificial viscosity, there is apparent loss of internal and viscous
energy.

Eror =E

+ EP EInternal + E

Kinetic otential + Viscous

= | % P av + [ogydv + [pedv +E,,,, (12
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As shown in Figure 9(b), the energy loss to internal and viscous dissipation energy
tends to decrease as the number of particle increases. Figure 9(a) shows that there are two
distinctive points where energy loss changes its rate drastically. The first one happens
around 0.5-sec when the surge front of collapsing dam hits right vertical wall. The second
one happens around 1.5-sec when the front of overturning wave hits free surface backward.
Both are the very moments that impact phenomena happen and the significant change of
volume is induced in local impact area, leading to the increase of internal energy.
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|
\
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(c)t=1.7 sec

Figure 8: Free surface profile (solid line is that of 100 x 200)
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Figure 10 shows the time-histories of pressure for the different numbers of particles at
the location where an arrow points. As expected, the fluctuation of pressure signal tends to
decrease as the number of particles increases. Pressure on the wall is extracted at the
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Figure 9: Energy change depending on the No. of particles

specified location by applying the Shepard interpolation.
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Figure 11: Wave height evolution (A:2.2m, B:2.7m away from left wall)
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Figure 11 shows the evolution of wave height at two locations, A and B, located at
2.233m and 2.725m away from the left vertical wall. What draws attention in this graph is
that, before overturning wave comes back to the location A and B, i.e. around 1.5-sec,
there is little difference in wave height evolution even though the numbers of particles
differ a lot. This means that SPH can capture the primary evolution of free surface even in
the case that the number of particles is not sufficient. However, as expected, deviation
becomes large as violent free surface develops in the tank. According to the results in

Figure 10, it can be said that convergence of SPH solution in a very strict sense is not easy
to mention.

4.2 Speed of sound

The state equation, Eq. (10), involves the speed of sound in the computation of pressure.
The factor B is proportional the square of the speed of sound, taking the following form:

B: pocz
v

(13)

When particles are evenly distributed and stay still at the beginning of analysis, density
gradient equals to zero, meaning that pressure gradient and corresponding acceleration are
zero as well. When a particle starts to move closer to neighboring particle, the density
gradient will increase leading to the increase of pressure gradient. Considering two
different materials with two different speeds of sound, the pressure gradient of the material
with a higher speed of sound will increase far more than that with a lower speed of sound,
leading to bigger repulsive force between particles. Similar situation happens when
particles get separated. When this is the case, the density gradient will drop, causing the
decrease of pressure gradient and consequently leading to the generation of attraction force.
Again, this attraction force will be larger when the speed of sound is larger. Figure 12
schematically illustrates how speed of sound affects particle interaction.
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Figure 12: Role of speed of sound
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(b) t=1.7 sec

Figure 13: Dependency on the speed of sound: from left 12, 25, 50, and
200m/sec, 5,000 particles

Based on the above explanation about the role of the speed of sound in SPH simulation,
it can be concluded that particle separation is less likely to happen when the speed of
sound get bigger. Figure 13 clearly shows such trend. It can be seen that the number of
spattering particles tends to decrease as the speed of sound becomes big. Since actual
speed of sound of water is 1500m/sec, which is far bigger than 200m/sec, maximum value
in Figure 13, it is less likely to see spattering particles when actual speed of sound is used
in the analysis. However, trade-off between simulation accuracy and computational cost
always needs to be considered so that actual speed of sound is hard to be used. Therefore,
it should be emphasized that the spatter of water particles in SPH simulation does not
happen always due to physical reason, but sometimes numerical reason.
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Figure 14: Pressure time histories for two speeds of sound
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Figure 14 shows the time-history of pressure at a point inside the tank. When the sound
speed is extremely low -reasonable value is about 50 m/sec in this analysis, based on the
Mach number of 0.1, pressure signal oscillates a lot, like Figure 14(a). This is due to the
fact that the speed of sound makes the fluid too compressible, therefore pressure fluctuates
in very slow manner. Figure 14(b) shows that oscillatory behavior of pressure decreases
significantly, thanks to the extremely weakened compressibility. Pressure waves still travel
through fluid, but with much higher speed ending up with very short wave length.

Figure 15 shows density fluctuation with respect to the speed of sound. As was
explained, a larger speed of sound makes the stiffer equation of state and cases less density
fluctuation. Again, this means that the fluid becomes less and less compressible. Drastic
density change occurs around 0.6-sec when the surge front of collapsing dam hits the right
vertical wall. The density fluctuation stays below 10% when speed of sound was set to be
50 m/sec, which is roughly 10 times maximum velocity of fluid throughout the analysis.

Figure 15(b) shows that maximum density fluctuation converges to zero in monotonic way
as the speed of sound increases.
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Figure 15: Density fluctuation

4.3 Frequency of density re-initialization

In SPH simulation for weakly compressible flow, two state variables are marched in time
domain according to the governing partial differential equation. Those variables are
density and velocity. The velocity vector is marched following the momentum equation
which links acceleration to pressure gradient and external body force. On the other hand,
the density field is updated by the continuity equation which connects density time rate to
velocity divergence. However, if the continuity equation is used for the evolution of
density field, consistency among pre-specified particle mass, density and volume may be
lost(Monaghan'*). This inconsistency can be overcome by so called density re-

initialization(Colagrossi’). To achieve this, density field is reset after a certain number of
time steps by using Eq. (14).

pi =2 P WAV, =3 m W, (14)
j J
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When Eq. (14) is applied, a special care should be given to avoid particle deficiency
problem. Colagrossi’ suggested to use a moving least square scheme to guarantee the
reproducibility of interpolation up to the first order, which the inversion of 3 x 3 matrix is
required for every particles. In the present study, however, the Shepard interpolation is
used mainly because it reduces computational cost significantly without deteriorating
interpolation accuracy considerably. The key in this parametric study is to know how often
density re-initialization needs to be done for observing the improvement of solution
accuracy. To this end, four different cases were analyzed, from re-initializing density for
every time step, through every 5 and 20 time steps, up to infinite, meaning no density re-
initialization at all.

Figure 16 clearly demonstrates that benefits are considerable when periodic density re-
initialization is applied. Spiky pressure field was smoothed, then the improvement of
velocity field can be expected as well. Figure 17 shows dramatic improvement in pressure
signal when the frequency of density re-initialization is frequent. It is also shown that the
re-initialization conserves energy much better than original SPH formulation because re-
initialization process is more or less like spatial filter which reduces high frequency
oscillation. In consequence, energy dissipation by artificial viscosity(Colagrossi’) can be
minimized.

f=INF =20 =5

(a) t=1.4 sec

F=INF

(a) t=1.7 sec

Figure 16: Improvement of pressure field due to density re-initialization: from
left, no re-initializing, once in 20, 5, and 1 time steps, 5,000 particles
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Figure 17: Pressure time-histories for different intervals of density re-initialization

4.4 Type of smoothing function

Proper choice of smoothing function has utmost importance in SPH simulation. This is
because, in meshless methods like SPH, interpolation is made based on the particles which
are arbitrarily scattered throughout the whole domain without any connectivity between
them. Under this circumstance, smoothing function and its first derivative are the only
parameters that determine how particles interact each other. There are some necessary
requirements of smoothing function, as follows:

- Partition of unity : IW(x —x",hydx =1

- Compact supportness : W(x—x")=0, |x— x'l > kh

- Property of Dirac delta function : ng W(x-x",h)=06(x—-x")
—

A Gaussian function is one of the most popular one among various smoothing functions.
Figure 18 shows smoothing function and its first derivative of Gaussian, quadratic and
cubic function respectively. Some use a quartic function as shown in Eq.(16). Gaussian,
cubic and quadratic have basically same shape in function itself, but its first derivatives are
different from each other. The quadratic function is quite different from others since it has
sharp peak at center so as to have ever increasing first derivative when approaching zero.
This quadratic smoothing function was firstly introduced by Johnson and Beissel'> who
claimed that it is an improvement over cubic spline smoothing function. The first
derivative of the quadratic function does not go down to zero when neighboring particle
enters within the distance of 2/34 where peak of its first derivative appears in case of cubic
function, which is intuitively more realistic.
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Figure 18: Various smoothing function

Eq. (15) to (18) shows Gaussian, quadratic, cubic and quartic smoothing functions.

Gaussian: W(R, h) = —l—e_R2 R= ‘)C—_)E,— (15)
I ’ h
2 (3 3 3
dratic: W(R,h)=—| —R*-=R+=| O0<R<2 16
Quadratic: W (R, h) ﬂh2(16 4 4) (16)
W (R h)=—2 g—Rz+1R3j O0<R<I
Tmh” \ 3 2
Cubic: - Db F(z—R)3 1<R<2 17)
' Trh* | 6 | T
=0 2<R

Quartic: W(R,h) = 15 (2 PR 412 >

— §‘§R +ﬁR3-§R4J 0<R<2 (18)

Figure 19 shows free surface profiles at t=1.4 sec for different smooth functions. It can
be said that differences are relatively minor in the sense that all are quite good in capturing

free surface profile, but particles near the tip of plunging wave behave in slightly different
way.

Gaussian Quadratic - Cubic Quartic

Figure 19: Free surface profile (t=1.4sec, 5,000 particles)

Figure 20 shows the detailed comparison of free surface profile between those of the
Gaussian and quadratic functions. Both are directly compared with the result with 20,000
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particles. According to these results, the quadratic function provides free surface profile
smoother than that of the Guassian distribution. In particular, particles near the tip of
plunging wave seem to behave more orderly at the moment right before plunging wave hits
horizontal free surface. Same situation happens after rebound of plunging wave forming
second water splash as shown in Figure 20(b). Though the reason why the quadratic
function seems to work better than the Gaussian is not clear at this moment, there are
several aspects that the quadratic smoothing function has edge over the Gaussian-type
smoothing function. As explained, unlike Gaussian type smoothing function, the first
derivative of the quadratic function does not have its peak, whereas it always tends to
move down to zero as inter-particle distance becomes very small in case of the Gaussian
smoothing. This means that the quadratic function is better in preventing inter-particle
penetration since the weight of approaching nearest neighboring particle always increases,
which is desirable. Again, this characteristic of the first derivative of the quadratic
smoothing function keeps compressive softening from occuring. It can be also pointed out
that tensile instability which is inevitable in SPH simulation may be reduced by using
quadratic smoothing function(Monaghan®).

Gaussian Quadratic

(a) t=1.45 sec

Gaussian Quadratic

(b) t=1.6 sec

Figure 20: Free surface profile (5,000 particles, solid line from 20,000 particles)
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Quadratic Gaussian

Figure 21: Free surface profile of breaking wave

The role of tensile instability as a source of differences between the two smoothing
functions may be backed by the fact that tensile stress becomes present only near the free
surface where differences is observed noticeably, especially near the tip of plunging wave.

Figure 21 shows the simulation results of wave breaking. Initially calm water was
excited by a piston-type wave maker placed at the left end of numerical basin. When
excitation frequency becomes high enough with amplitude unchanged, wave tends to break
at the very early stage of its propagation. It can be observed that similar situation happens
in this wave breaking problem if focus is on the tip of plunging wave. Particles are more
orderly distributed when the quadratic smoothing function was used. Again, this is the area
where negative pressure becomes present having the chances of tensile instability.

4.5 Smoothing length

Smoothing length is the size of smoothing function, A, in Eq. (15)~(18), indicating the
level of smoothing. For a given number of particles, smoothing will be done in larger area
if the smoothing length becomes larger, meaning that field will be more and more
smoothed but spatial resolution becomes less and less accurate. In this sense, the
smoothing length plays a role similar to grid resolution in grid-based numerical methods.
In the present case, the level of smoothing is strongly linked to both smoothing length and
the number of particle. Therefore, it may be desirable to have more particles in
computational domain with smaller smoothing length, keeping a enough number of
neighboring particles inside a support domain.

Figure 22 shows free surface profiles for two different smoothing lengths, 0.7 and 0.9
times initial particle space, As. The Gaussian smoothing function was used in this
simulation. Figure 22(a) shows that pressure field is far smoother when the larger
smoothing length was used. When free surface becomes more violent as in Figure 22(b),
free surface profile with smaller smoothing length becomes very poor compared to the case
of the larger smoothing length.

Figure 23 shows pressure time history at two different locations: one on the tank bottom
and the other on the right vertical wall. It clearly demonstrates that the number of
neighboring particles getting involved in the SPH smoothing process is a key to achieve
sufficient accuracy. The number of neighboring particles is between 13~17 in case of
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0.7As, while it is between 20~25 in case of 0.9As. 0.85As ~0.9As seems to be reasonable
choice for the Gaussian smoothing function without the loss of local behavior.

K=0.7xAs K=0.9xAs

(a) t=0.3 sec

K=0.7xAs

(b) t=1.4 sec
Figure 22: Free surface profiles for different smoothing lengths (5,000 particles)
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(b) On the right vertical wall

Figure 23: Pressure time history w.r.t smoothing length

The smoothing length could be of course larger than 0.9As leading to smoother field.
However, as mentioned before, it will deteriorate spatial resolution. Moreover, increasing
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the number of neighboring particles increases the number of total pair of interacting
particles, ending up with longer analysis time. Many literatures recommend about or
slightly more than 20 for the optimal number of neighboring particles. Another problem
that may be met when the number of neighboring particle increases is that particles near
the solid wall tend to penetrate into the wall.

As to SPH interpolation itself, the convergence of interpolation error can be expressed
as follows(Mas-Gallic and Raviart'®):

2
Err =1+ [H] (19)
h

where n is the order of derivative. Eq.(19) indicates that interpolation error tends to
decrease when smoothing length gets smaller and the ratio of particle space to smoothing
length becomes small. Regarding the second term, in order to achieve the convergence of
SPH interpolation, it should be kept that the particle space decreases faster than the
decrease of the smoothing length. If the ratio of the particle space to the smoothing length
is kept constant when refining, interpolation error will never converge to zero(Colagrossi’).

4.6 Wall pressure(pressure extraction method)

Three different methods are considered to compute hydrodynamic pressure acting on the
solid wall. SPH interpolation scheme, direct calculation from nearest particle and pressure
sensor approach are those.

Method I : In this scheme, pressure on the wall is calculated based on the original SPH
interpolation formula. In order to overcome boundary deficiency problem, which is
inevitable near the solid wall, Shepard interpolation was used as Eqn(20).

N _ _ m.
D P W (ri =y, )=
J Pj
By = ) (20)
D wri-r;,m—L
7 Pj

Method 1II : Pressure on the wall is calculated based on the pressure value of the nearest
particle. Instead of directly using the value, correction was made to compensate hydrostatic
pressure which is caused by the difference of vertical position between the pressure point
and its nearest particle.

PM = Lilosest _pig(yclosest -_yi) (21)

Method IIT : In this scheme, pressure is averaged over the size of pseudo pressure sensor.
Particles near solid wall within the distance of 1.5h and the width Seneor, Which is the width
of pseudo pressure sensor, are searched first. Then the pressure of each sampled particle(i)
is projected(i’) to the wall. These particles are sorted sequentially in tangential direction,
following the curvilinear abscissa q, which is parallel to the arbitrarily curved wall.
Finally, the pressure at the position of interest is obtained following the formula.
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PdS Zi'Pi'dSi'

PM — SSenSOr ~ (22)
J' das Zi,dSl..
Ssensﬂr
where dS; = ql;];h, Fo=F—-pgly:—y)

The detailed procedure of Method III can be found in Oger et.al."”.

Figure 24 shows pressure time history which was obtained based on the aboved
mentioned procedures applied to the 2D sloshing problem of Figure 7. Method I, based on
the origianl SPH interpolation, shows minimal pressure fluctuation among the cases.
Overall trends are pretty similar between different schemes, but different spikiness level
led to different pressure value at its peak and valley.

PlpgL
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(a) Method 1
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(b) Method 1I

P/pgL

L ( L L L
2 ) 8 12 Er) 16 18 2
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(c) Method III

Figure 24: Comparison of local pressure time history (y=0.0175 of left vertical
wall, w=2.7, h/b=0.08)
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5 Conclusions

In the present study, comprehensive numerical tests have been done to gather information
about what the aftermath of parameter change is in SPH simulation as well as how solution
accuracy can be improved without touching the fundamentals of scheme itself. The
gathered information can be summarized as follows.
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Similar to other discretization-based numerical schemes, SPH also shows converging
property in its nature when the number of particle used in the analysis increases,
though quantitative evaluation is not easy to perform. In order to increase convergence
rate, the ratio of initial particle space to smoothing length should decrease while
increasing number of particle. Good news is that energy loss -actually it is not loss- to
internal energy plus to viscous dissipation tends to decrease in monotonic way when
number of particle increases. Also, spiky behavior of pressure time history tends to
decrease with the increase of particle number.

The speed of sound is one of the most important analysis parameters in SPH
simulation. Generally, to simulate incompressible fluid flow by weakly compressible
approach, the speed of sound is set to be 10 times of the expected maximum velocity.
The speed of sound plays a very important role in particle spattering, which resembles
real physical phenomenon. However, in some sense, this particle spattering is induced
by imaginarily low sound speed, which is the consequence of trade-off between
solution accuracy and computational efficiency. Nevertheless, such spatter of particle
is not completely far from real physical phenomena since the splash occurs in actual
physical problems.

It turned out that the use of periodic density re-initialization provides huge
improvement to the results of SPH simulation. The density re-initialization process
works pretty well in removing the spikiness of pressure-time signal as well as
smoothing pressure field itself. In the present case, the more frequent re-initialization
is carried out, the better results it produces.

The type of smoothing function basically has minor influence to SPH simulation
results. The unique characteristics of quadratic smoothing function, ever increasing
first derivative when particles get closer, seems to generate better results especially
near the tip of plunging wave, where tensile stress is always present. If discussion is
confined only to the interpolation capability of smoothing function, it can be said that
Gaussian or cubic is better than quadratic especially when particles are disorderly
distributed. However, this gap can be overcome by using normalization of smoothing
function, like Shepard interpolation.

Smoothing length needs to be large enough to include a sufficient number of
neighboring particles for accurate interpolation. At the same time, it shouldn’t be too
large in order not to smooth out all the details of local behavior. In case of Gaussian
smoothing function, when smoothing length becomes larger than 0.9 times initial
particle space, problems occurs near the solid wall such as particle penetration into the
wall.

Three different schemes used to extract wall pressure were examined to see how
accurately each scheme captures local wall pressure. It is not easy to make clear
conclusion about which method is best due to the spikiness in pressure time history.
Further investigation is required to find out accurate pressure extraction scheme.
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