Removal of Organic Load from Olive Washing Water by an Aerated Submerged Biofilter and Profiling of the Bacterial Community Involved in the Process

  • Published : 2007.05.31

Abstract

The present work aims to use a biofilter technology(aerated submerged filters) for the aerobic transformation at laboratory-scale of olive washing water(OWW) generated in the first steps of olive oil processing, as well as the genetic profiling and identification to the species level of the bacteria involved in the formation of the biofilm, by means of TGGE. Chemical parameters, such as biological oxygen demand at five days($BOD_5$) and chemical oxygen demand(COD), decreased markedly(up to 90 and 85%, respectively) by the biological treatment, and the efficiency of the process was significantly affected by aeration and inlet flow rates. The total polyphenol content of inlet OWW was only moderately reduced(around 50% decrease of the inlet content) after the biofilter treatment, under the conditions tested. Partial 16S rRNA genes were amplified using total DNA extracted from the biofilm and separated by TGGE. Sequences of isolated bands were mostly affiliated to the $\alpha-subclass$ of Proteobacteria, and often branched in the periphery of bacteria] genera commonly present in soil(Rhizobium, Reichenowia, Agrobacterium, and Sphingomonas). The data obtained by the experimentation at laboratory scale provided results that support the suitability of the submerged filter technology for the treatment of olive washing waters with the purpose of its reutilization.

Keywords

References

  1. Altschul, S. F., T. L. Madden, A. A. Schaeffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acid Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. APHA, AWWA, WEF. 2001. Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, Washington, DC, U.S.A
  3. Bertin, L., M. Majone, D. Di Gioia, and F. Fava. 2001. An aerobic fixed-phase biofilm reactor system for the degradation of the low-molecular weight aromatic compounds occurring in the effluents of anaerobic digestors treating olive mill wastewaters. J. Biotechnol. 87: 161-177 https://doi.org/10.1016/S0168-1656(01)00236-X
  4. Bond, P. L., R. Erhart, M. Wagner, J. Keller, and L. L. Blackall. 1999. Identification of some of the major groups of bacteria in efficient and non efficient biological phosphorous removal activated sludge systems. Appl. Environ. Microbiol. 65: 4077-4084
  5. Borja, R., J. Alba, S. E. Garrido, L. Martinez, M. P. Garcia, M. Monteoliva, and A. Ramos-Cormenzana. 1995. Effect of aerobic pretreatment with Aspergillus terreus on the anaerobic digestion of olive-mill wastewater. Biotechnol. Appl. Biochem. 22: 233-246
  6. Borja, R., J. Alba, A. Martin, and A. Mancha. 1998. Effect of organic loading rate on anaerobic digestion process of wastewater from the washing of olives prior to the oil production process in a fluidized bed reactor. Grasas Aceites 49: 42-49 https://doi.org/10.3989/gya.1998.v49.i1.707
  7. Cortes-Lorenzo, C., M. L. Molina-Munoz, B. Gomez-Villalba, R. Vílchez, A. Ramos, B. Rodelas, E. Hontoria, and J. Gonzalez-Lopez. 2006. Analysis of community composition of biofilms in a submerged filter system for the removal of ammonia and phenol from an industrial wastewater. Biochem. Soc. Trans. 34: 165-168 https://doi.org/10.1042/BST0340165
  8. De Filippi, L. J. and S. Lupton. 1998. Introduction to microbiological degradation of aqueous waste and its application using a fixed-film reactor, pp. 1-34. In Lewandowski, G. A. and L. J. De Filippi. (eds.), Biological Treatments of Hazardous Wastewaters. Wiley, New York
  9. Decho, A. W. 2000. Microbial biofilms in intertidal systems: An overview. Cont. Shelf Res. 20: 1257-1273 https://doi.org/10.1016/S0278-4343(00)00022-4
  10. Di Gioia, D., C. Barberio, S. Spagnesi, L. Marchetti, and F. Fava. 2002. Characterization of four olive mill wastewater indigenous bacterial strains capable of aerobically degrading hydroxylated and methoxylated monocyclic aromatic compounds. Arch. Microbiol. 178: 208-217 https://doi.org/10.1007/s00203-002-0445-z
  11. Ehaliotis, C., K. Papadopolou, M. Kotsou, I. Mari, and G. Balis. 1999. Adaptation and population dynamics of Azotobacter vinelandii during aerobic biological treatment of olive-mill wastewater. FEMS Microbiol. Ecol. 30: 301- 311 https://doi.org/10.1111/j.1574-6941.1999.tb00658.x
  12. FIA, Fundacion para la Innovacion Agraria. 2002. Mayor calidad del aceite de oliva ($2^a$ parte). Boletin Olivicola 9: 2
  13. Gomez-Villalba, B., C. Calvo, R. Vilchez, J. Gonzalez- Lopez, and B. Rodelas. 2006. TGGE analysis of the diversity of ammonia-oxidizing and denitrifying bacteria in submerged filter biofilms for the treatment of urban wastewater. Appl. Microbiol. Biotechnol. 72: 393-400 https://doi.org/10.1007/s00253-005-0272-7
  14. Hamdi, M. and R. Ellouz. 1993. Treatment of detoxified olive mill wastewaters by anaerobic filter and aerobic fluidized bed process. Environ. Technol. 14: 183-188 https://doi.org/10.1080/09593339309385278
  15. Harayama, S., Y. Kasai, and A. Hara. 2004. Microbial communities in oil-contaminated seawater. Curr. Opin. Biotechnol. 15: 205-214 https://doi.org/10.1016/j.copbio.2004.04.002
  16. Henckel, T., U. Jackel, S. Schenll, and R. Conrad. 2000. Molecular analysis of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl. Environ. Microbiol. 66: 1801-1808 https://doi.org/10.1128/AEM.66.5.1801-1808.2000
  17. Jang, A., M. Bum, S. Y. Kim, Y. H. Ahn, I. S. Kim, and P. L. Bishop. 2005. Assessment of characteristcs of biofilm formed on autotrophic denitrification. J. Microbiol. Biotechnol. 15: 455-460
  18. Jeanmougin, F., J. D. Thompson, M. Gouy, D. G. Higgins, and T. J. Gibson. 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23: 403-405 https://doi.org/10.1016/S0968-0004(98)01285-7
  19. Kanaly, R. A. and S. Harayama. 2000. Biodegradation of high molecular weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 182: 2059-2067 https://doi.org/10.1128/JB.182.8.2059-2067.2000
  20. Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA2: Molecular Evolutionary Genetics Analysis software, Arizona State University, Tempe, Arizona, U.S.A
  21. Mameri, N., F. Halet, M. Drouiche, H. Grib, H. Lounici, A. Pauss, D. Piron, and D. Belhocine. 2000. Treatment of olive mill washing water by ultrafiltration. Can. J. Chem. Eng. 78: 590-595
  22. Mantzavinos, D. and N. Kalogerakis. 2005. Treatment of olive mill effluents. Part I. Organic matter degradation by chemical and biological processes - an overview. Environ. Int. 31: 289-295 https://doi.org/10.1016/j.envint.2004.10.005
  23. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S RNA. Appl. Environ. Microbiol. 59: 695-700
  24. Ohta, H., R. Hattori, Y. Ushiba, H. Mitsui, M. Ito, H. Watanabe, A. Tonosaki, and T. Hattori. 2004. Sphingomonas oligophenolica sp. Nov., a halo- and organo-sensitive oligotrophic bacterium from paddy soil that degrades phenolic acids at low concentrations. Int. J. Syst. Evol. Microbiol. 54: 2185-2190 https://doi.org/10.1099/ijs.0.02959-0
  25. Parke, D., F. Rynne, and A. Glenn. 1991. Regulation of phenolic catabolism in Rhizobium leguminosarum biovar trifolii. J. Bacteriol. 173: 5546-5550 https://doi.org/10.1128/jb.173.17.5546-5550.1991
  26. Raposo, F., R. Borja, E. Sanchez, M. A. Martin, and A. Martin. 2004. Performance and kinetic evaluation of the anaerobic digestion of two-phase olive mill effluents in reactors with suspended and immobilized biomass. Water Res. 3: 2017-2026
  27. Romine, M. T, L. C. Stillwell, K. K. Wong, S. J. Thurston, E. C. Sisk, C. Sensen, T. Gaasterland, J. K. Fredrickson, and J. D. Saffer. 1999. Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J. Bacteriol. 181: 1585-1602
  28. Ronchero, A. V., R. M. Duran, and E. G. Constante. 1974. Componentes fenolicos de la aceituna. II. Polifenoles del alpechin. Grasas Aceites 25: 259-261
  29. Sandaa, R., V. Torsvik, O. Enger, F. L. Daae, T. Castberg, and D. Hahn. 1999. Analysis of bacterial communities in heavy metal contaminated soils at different levels of resolutions. FEMS Microbiol. Ecol. 30: 237-251 https://doi.org/10.1111/j.1574-6941.1999.tb00652.x
  30. Watanabe, K., S. Yamamoto, S. Hino, and S. Harayama. 1998. Population dynamics of phenol degrading bacteria in activated sludge determined by gyrB-targeted quantitative PCR. Appl. Environ. Microbiol. 64: 1203-1209
  31. Watanabe, K. 2001. Microorganisms relevant to bioremediation. Curr. Opin. Biotech. 12: 237-241 https://doi.org/10.1016/S0958-1669(00)00205-6
  32. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703 https://doi.org/10.1128/jb.173.2.697-703.1991
  33. White, D. C., S. Sutton, and D. Ringelberg. 1995. The genus Sphingomonas: Physiology and ecology. Curr. Opin. Biotechnol. 7: 301-306 https://doi.org/10.1016/S0958-1669(96)80034-6