Biochemical and Genetic Characterization of Arazyme, an Extracellular Metalloprotease Produced from Serratia proteamaculans HY-3

  • Kwak, Jang-Yul (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Ki-Eun (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Shin, Dong-Ha (Insect BioTech Co., Ltd.) ;
  • Maeng, Jin-Soo (Laboratory of Biophysical Chemistry, National Heart, Lung and Blood Institute, National Institutes of Health) ;
  • Park, Doo-Sang (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Hyun-Woo (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Son, Kwang-Hee (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Bae, Kyung-Sook (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Ho-Yong (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2007.05.31

Abstract

Serratia proteamaculans HY-3 isolated from the digestive tract of a spider produces an extracellular protease named arazyme, with an estimated molecular mass of 51.5 kDa. The purified enzyme was characterized as having high activities at wide pH and temperature ranges. We further characterized biochemical features of the enzymatic reactions under various reaction conditions. The protease efficiently hydrolyzed a broad range of protein substrates including albumin, keratin, and collagen. The dependence of enzymatic activities on the presence of metal ions such as calcium and zinc indicated that the enzyme is a metalloprotease, together with the previous observation that the proteolytic activity of the enzyme was not inhibited by aspartate, cysteine, or serine protease inhibitors, but strongly inhibited by 1,10-phenanthroline and EDTA. The araA gene encoding the exoprotease was isolated as a 5.6 kb BamHI fragment after PCR amplification using degenerate primers and subsequent Southern hybridization. The nucleotide sequence revealed that the deduced amino acid sequences shared extensive similarity with those of the serralysin family of metalloproteases from other enteric bacteria. A gene(inh) encoding a putative protease inhibitor was also identified immediately adjacent to the araA structural gene.

Keywords

References

  1. Akatsuka, H., R. Binet, E. Kawai, C. Wandersman, and K. Omori. 1997. Lipase secretion by bacterial hybrid ATP-binding cassette exporters: Molecular recognition of the LipBCD, PrtDEF, and HasDEF exporters. J. Bacteriol. 179: 4754-4760 https://doi.org/10.1128/jb.179.15.4754-4760.1997
  2. Baumann, U., S. Wu, K. M. Flaherty, and D. B. McKay. 1993. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: A two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 12: 3357- 3364
  3. Bersanetti, P., H.-Y. Park, K. S. Bae, K.-H. Son, D. H. Shin, I. Y. Hirata, M. A. Juliano, A. K. Carmona, and L. Juliano. 2005. Characterization of Arazyme, and exocellular metalloprotease isolated from Serratia proteamaculans culture medium. Enzyme Microb. Technol. 37: 574-581 https://doi.org/10.1016/j.enzmictec.2005.01.041
  4. Bowen, D. J., T. A. Rocheleau, C. K. Grutzmacher, L. Meslet, M. Valens, D. Marble, A. Dowling, R. French- Constant, and M. A. Blight. 2003. Genetic and biochemical characterization of PrtA, an RTX-like metalloprotease from Photorhabdus. Microbiology 149: 1581-1591 https://doi.org/10.1099/mic.0.26171-0
  5. Braun, V. and G. Schmitz. 1980. Excretion of a protease by Serratia marcescens. Arch. Microbiol. 124: 55-61 https://doi.org/10.1007/BF00407028
  6. Braunagel, S. C. and M. J. Benedik. 1990. The metalloprotease gene of Serratia marcescens strain SM6. Mol. Gen. Genet. 222: 446-451 https://doi.org/10.1007/BF00633854
  7. Chabeaud, P., A. de Groot, W. Bitter, J. Tommassen, T. Heulin, and W. Achouak. 2001. Phase-variable expression of an operon encoding extracellular alkaline protease, a serine protease homolog, and lipase in Pseudomonas brassicacearum. J. Bacteriol. 183: 2117-2120 https://doi.org/10.1128/JB.183.6.2117-2120.2001
  8. Choi, N. S., K. H. Yoo, J. H. Hahm, K. S. Yoon, K. T. Chang, B. H. Hyun, P. J. Maeng, and S. H. Kim. 2005. Purification and characterization of a new peptidase, bacillopeptidase DJ-2, having fibrinolytic activity: Produced by Bacillus sp. DJ-2 from Doen-Jang. J. Microbiol. Biotechnol. 15: 72-79
  9. Choi, N. S., K. H. Yoo, K. S. Yoon, K. T. Chang, P. J. Maeng, and S. H. Kim. 2005. Identification of recombinant subtilisins. J. Microbiol. Biotechnol. 15: 35-39
  10. Delepelaire, P. and C. Wandersman. 1989. Protease secretion by Erwinia chrysanthemi. Proteases B and C are synthesized and secreted as zymogens without a signal peptide. J. Biol. Chem. 264: 9083-9089
  11. Grant, S. G., J. Jessee, F. R. Bloom, and D. Hanahan. 1990. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc. Natl. Acad. Sci. USA 87: 4645-4649
  12. Guzzo, J., M. Murgier, A. Filloux, and A. Lazdunski. 1990. Cloning of the Pseudomonas aeruginosa alkaline protease gene and secretion of the protease into the medium by Escherichia coli. J. Bacteriol. 172: 942-948 https://doi.org/10.1128/jb.172.2.942-948.1990
  13. Hanna, P. 1999. Lethal toxin actions and their consequences. J. Appl. Microbiol. 87: 285-287 https://doi.org/10.1046/j.1365-2672.1999.00891.x
  14. Higgins, C. F. 2001. ABC transporters: Physiology, structure and mechanism -- an overview. Res. Microbiol. 152: 205- 210 https://doi.org/10.1016/S0923-2508(01)01193-7
  15. Janssen, G. R. and M. J. Bibb. 1993. Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene 124: 133-134 https://doi.org/10.1016/0378-1119(93)90774-W
  16. Kato, J. Y., A. Suzuki, H. Yamazaki, Y. Ohnishi, and S. Horinouchi. 2002. Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus. J. Bacteriol. 184: 6016-6025 https://doi.org/10.1128/JB.184.21.6016-6025.2002
  17. Kawai, E., H. Akatsuka, A. Idei, T. Shibatani, and K. Omori. 1998. Serratia marcescens S-layer protein is secreted extracellularly via an ATP-binding cassette exporter, the Lip system. Mol. Microbiol. 27: 941-952 https://doi.org/10.1046/j.1365-2958.1998.00739.x
  18. Kim, Y. H., S. S. Choi, D. K. Kang, S. S. Kang, B. C. Jeong, and S. K. Hong. 2004. Overexpression of sprA and sprB genes is tightly regulated in Streptomyces griseus. J. Microbiol. Biotechnol. 14: 1350-1355
  19. Kling, J. J., R. L. Wright, J. S. Moncrief, and T. D. Wilkins. 1997. Cloning and characterization of the gene for the metalloprotease enterotoxin of Bacteroides fragilis. FEMS Microbiol. Lett. 146: 279-284 https://doi.org/10.1111/j.1574-6968.1997.tb10205.x
  20. Kwak, J., D.-H. Lee, Y.-D. Park, S. B. Kim, J.-S. Maeng, H. W. Oh, H.-Y. Park, and K.-S. Bae. 2006. Polyphasic assignment of a highly proteolytic bacterium to Serratia proteamaculans. J. Microbiol. Biotechnol. 16: 1537-1543
  21. Kwak, J., L. A. McCue, K. Trczianka, and K. E. Kendrick. 2001. Identification and characterization of a developmentally regulated protein, EshA, required for sporogenic hyphal branches in Streptomyces griseus. J. Bacteriol. 183: 3004-3015 https://doi.org/10.1128/JB.183.10.3004-3015.2001
  22. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  23. Lee, K., C.-H. Kim, H.-J. Kwon, J. Kwak, D.-H. Shin, D.-S. Park, K.-S. Bae, and H.-Y. Park. 2004. Biochemical characterization of an extracellular protease in Serratia proteamaculans isolated from a spider. Kor. J. Microbiol. 40: 269-274
  24. Letoffe, S., P. Delepelaire, and C. Wandersman. 1990. Protease secretion by Erwinia chrysanthemi: The specific secretion functions are analogous to those of Escherichia coli alpha-haemolysin. EMBO J. 9: 1375-1382
  25. Letoffe, S., J. M. Ghigo, and C. Wandersman. 1994. Secretion of the Serratia marcescens HasA protein by an ABC transporter. J. Bacteriol. 176: 5372-5377 https://doi.org/10.1128/jb.176.17.5372-5377.1994
  26. Liao, C. H. and D. E. McCallus. 1998. Biochemical and genetic characterization of an extracellular protease from Pseudomonas fluorescens CY091. Appl. Environ. Microbiol. 64: 914-921
  27. Lyerly, D. M. and A. S. Kreger. 1983. Importance of serratia protease in the pathogenesis of experimental Serratia marcescens pneumonia. Infect. Immun. 40: 113-119
  28. Maeda, H. and K. Morihara. 1995. Serralysin and related bacterial proteinases. Methods Enzymol. 248: 395-413 https://doi.org/10.1016/0076-6879(95)48026-9
  29. Marits, R., V. Koiv, E. Laasik, and A. Mae. 1999. Isolation of an extracellular protease gene of Erwinia carotovora subsp. carotovora strain SCC3193 by transposon mutagenesis and the role of protease in phytopathogenicity. Microbiology 145: 1959-1966 https://doi.org/10.1099/13500872-145-8-1959
  30. Marty, K. B., C. L. Williams, L. J. Guynn, M. J. Benedik, and S. R. Blanke. 2002. Characterization of a cytotoxic factor in culture filtrates of Serratia marcescens. Infect. Immun. 70: 1121-1128 https://doi.org/10.1128/IAI.70.3.1121-1128.2002
  31. Matsumoto, K., H. Maeda, K. Takata, R. Kamata, and R. Okamura. 1984. Purification and characterization of four proteases from a clinical isolate of Serratia marcescens kums 3958. J. Bacteriol. 157: 225-232
  32. Miyata, K., K. Maejima, K. Tomoda, and M. Isono. 1970. Serratia protease. Purification and general properties of the enzyme. Agric. Biol. Chem. 34: 310-318 https://doi.org/10.1271/bbb1961.34.310
  33. Moon, E. Y., H. Y. Oh, P. J. Maeng, and K.-S. Bae. 2001. Identification of enteric bacteria from Nephila clavata. Korean J. Microbiol. 37: 1-8
  34. Nakahama, K., K. Yoshimura, R. Marumoto, M. Kikuchi, I. S. Lee, T. Hase, and H. Matsubara. 1986. Cloning and sequencing of Serratia protease gene. Nucleic Acids Res. 14: 5843-5855 https://doi.org/10.1093/nar/14.14.5843
  35. Olson, J. C. and D. E. Ohman. 1992. Efficient production and processing of elastase and LasA by Pseudomonas aeruginosa require zinc and calcium ions. J. Bacteriol. 174: 4140-4147 https://doi.org/10.1128/jb.174.12.4140-4147.1992
  36. Raveneau, J., C. Geoffroy, J. L. Beretti, J. L. Gaillard, J. E. Alouf, and P. Berche. 1992. Reduced virulence of a Listeria monocytogenes phospholipase-deficient mutant obtained by transposon insertion into the zinc metalloprotease gene. Infect. Immun. 60: 916-921
  37. Secades, P. and J. A. Guijarro. 1999. Purification and characterization of an extracellular protease from the fish pathogen Yersinia ruckeri and effect of culture conditions on production. Appl. Environ. Microbiol. 65: 3969-3975
  38. Upadhyaya, N. M., T. R. Glare, and H. K. Mahanty. 1992. Identification of a Serratia entomophila genetic locus encoding amber disease in New Zealand grass grub (Costelytra zealandica). J. Bacteriol. 174: 1020-1028 https://doi.org/10.1128/jb.174.3.1020-1028.1992
  39. Wolz, R. L. and J. S. Bond. 1990. Phe5(4-nitro)-bradykinin: A chromogenic substrate for assay and kinetics of the metalloendopeptidase meprin. Anal. Biochem. 191: 314- 320 https://doi.org/10.1016/0003-2697(90)90225-X
  40. Yang, H.-Y., S.-S. Choi, W.-J. Chi, J.-H. Kim, D. K. Kang, J. Chun, S.-S. Kang, and S.-K. Hong. 2005. Identification of the sprU gene encoding an additional sprT homologous trypsin-type protease in Streptomyces griseus. J. Microbiol. Biotechnol. 15: 1125-1129