Production of Recombinant Polyhedra Containing Cry1Ac Fusion Protein in Insect Cell Lines

  • Kim, Jae-Su (School of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University) ;
  • Choi, Jae-Young (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Roh, Jong-Yul (School of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University) ;
  • Lee, Han-Young (Agricultural Technology Research Institute, Dongbu Hannong Chemical Co. Ltd.) ;
  • Jang, Seung-Sik (Agricultural Technology Research Institute, Dongbu Hannong Chemical Co. Ltd.) ;
  • Je, Yeon-Ho (School of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University)
  • 발행 : 2007.05.31

초록

Insect cell lines and the control of infection for obtaining the maximum amount of polyhedrin-Cry1Ac-polyhedrin fusion protein from Bactrus in monolayer and suspension culture systems were tested. Growth rates of the Trichoplusia ni(High-Five) cell line in both culture systems were better than the other insect cell lines, Spodoptera frugiferda(Sf-9, Sf-21), Trichoplusia ni(Tn5), and Spodoptera exigua(Se301). The expression of the fusion protein in a monolayer culture showed that Se301 cells were 2.3-4.8 times more productive on a per cell basis than the other cell lines. However, in suspension culture, only High-Five cells were productive. High-Five cells infected with Bactrus at a multiplicity of infection(MOI) of 5 and a cell density of $3.0{\times}10^5$ cells per ml were more productive than the other infection condition in a suspension culture suitable for a large-scale production of baculovirus. In conclusion, for the large-scale production of Bactrus in vitro, High-Five cells showing good growth and high productivity are suitable.

키워드

참고문헌

  1. Bedard, C., R. Tom, and A. Kamen. 1993. Growth, nutrient consumption and end-product accumulation in Sf-9 and BTI-EAA insect cell cultures: Insights into growth limitation and metabolism. Biotechnol. Prog. 9: 615-624 https://doi.org/10.1021/bp00024a008
  2. Bill, M., F. Lindsey, and H. Gary. 1996. A brief overview of biotechnology at Dupont Ag. and a case study with recombinant baculovirus. Cornell Community: Conference on biological control
  3. Caron, A. W., L. Archambault, and B. Massie. 1990. High level recombinant protein production in bioreactors using the baculovirus-insect cell expression system. Biotechnol. Bioeng. 36: 1133-1140 https://doi.org/10.1002/bit.260361108
  4. Chen, Y., Z. Z. Zhu, X. A. Lin, Y. Z. Yi, Z. F. Zhang, and G. F. Shen. 2005. Overexpression and characterization of appA phytase expressed by recombinant baculovirusinfected silkworm. J. Microbiol. Biotechnol. 15: 466-471
  5. Choi, J. Y., S. D. Woo, Y. H. Je, and S. K. Kang. 1999. Development of a novel expression vector system using Spodoptera exigua nucleopolyhedrovirus. Mol. Cells 9: 504-509
  6. Donaldson, M. S. and M. L. Shuler. 1998. Low-cost serum-free medium for the BTI-Tn5N1-4 insect cell line. Biotechnol. Prog. 14: 573-579 https://doi.org/10.1021/bp9800541
  7. Dougherty, E. M., R. M. Weiner, J. L. Vaughn, and C. F. Reichelderfer. 1981. Physical factors that affect in vitro Autographa californica nuclear polyhedrosis virus production. Appl. Environ. Microbiol. 41: 1166-1172
  8. Drews, M., T. Paalme, and R. Vilu. 1995. The growth and nutrient utilization of the insect cell line Spodoptera frugiferda Sf9 in batch and continuous culture. J. Biotechnol. 40: 187- 198 https://doi.org/10.1016/0168-1656(95)00045-R
  9. Elias, C. B., A. Zeiser, C. Bedard, and A. A. Kamen. 2000. Enhanced growth of Sf-9 cells to a maximum density of $5.2{\times}10^7$ cells per ml and production of ${\beta}-galactosidase$ at high cell density by fed batch culture. Biotechnol. Bioeng. 68: 381-388 https://doi.org/10.1002/(SICI)1097-0290(20000520)68:4<381::AID-BIT3>3.0.CO;2-D
  10. Ferrance, J. P., A. Goel, and M. M. Ataai. 1993. Utilization of glucose and amino acid in insect cell cultures: Quantifying the metabolic flows within the primary pathways and medium development. Biotechnol. Bioeng. 42: 697-707 https://doi.org/10.1002/bit.260420604
  11. Hensler, W., V. Singh, and S. N. Agathos. 1994. Sf9 insect cell growth and ${\beta}-galactosidase$ production in serum and serum-free media. Ann. N. Y. Acad. Sci. 745: 149-166 https://doi.org/10.1111/j.1749-6632.1994.tb44370.x
  12. Ikonomou, L., Y. J. Schneider, and S. N. Agathos. 2003. Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol. 61: 1-20 https://doi.org/10.1007/s00253-002-1189-z
  13. Ismail, D. and Z. Demirbag. 2006. A productive replication of Hyphantria cunea nucleopolyhedrovirus in Lymantria dispar cell line. J. Microbiol. Biotechnol. 16: 1485-1490
  14. Je, Y. H., B. R. Jin, J. Y. Roh, J. H. Chang, and S. K. Kang. 1999. Construction of a novel recombinant baculovirus producing polyhedra with a Bacillus thuringiensis Cry1Ac crystal protein. J. Korean Soc. Virol. 29: 145-153
  15. Kang, C. S., S. Y. Son, and I. S. Bang. 2006. High-level expression of T4 endonuclease 5 in insect cells as biologically active form. J. Microbiol. Biotechnol. 16: 1583-1590
  16. Kim, J. S., J. Y. Choi, J. H. Chang, H. J. Shim, J, Y. Roh, B. R. Jin, and Y. H. Je. 2005. Characterization of an improved recombinant baculovirus producing polyhedra that contain Bacillus thuringiensis Cry1Ac crystal protein. J. Microbiol. Biotechnol. 15: 710-715
  17. Kioukia, N., A. W. Nienow, A. N. Emery, and M. A. Rubeai. 1994. Physiological and environmental factors affecting the growth of insect cells and infection with baculovirus. J. Biotechnol. 38: 243-251
  18. Krell. P. J. 1996. Passage effect of virus infection in insect cells. Cytotechnology 20: 125-137 https://doi.org/10.1007/BF00350393
  19. Licari, P. and J. E. Bailey. 1991. Factors influencing recombinant protein yields in an insect cell-baculovirus system: Multiplicity of infection and intracellular protein degradation. Biotechnol. Bioeng. 37: 238-246 https://doi.org/10.1002/bit.260370306
  20. Maiorella, B., D. Inlow, A. Shauger, and D. Harano. 1988. Large-scale insect cell-culture for recombinant protein production. Bio/Technology 6: 1406-1410 https://doi.org/10.1038/nbt1288-1406
  21. Maranga, L., A. S. Coroadinha, and M. J. T. Carrondo. 2002. Insect cell culture medium supplementation with fetal bovine serum and bovine serum albumin: Effects on baculovirus adsorption and infection kinetics. Biotechnol. Prog. 18: 855-861 https://doi.org/10.1021/bp025514b
  22. Maranga, L., P. Rueda, A. F. G. Antonis, C. Vela, J. P. M. Langeveld, J. I. Casal, and M. J. T. Carrondo. 2002. Large scale production and downstream processing of a recombinant porcine parvovirus vaccine. Appl. Microbiol. Biotechnol. 59: 45-50 https://doi.org/10.1007/s00253-002-0976-x
  23. Martens, J. W. M., G. Honee, D. Zuidema, J. W. M. Van Lent, B. Visser, and J. M. Vlak. 1990. Insecticidal activity of a bacterial crystal protein expressed by a recombinant baculovirus in insect cells. Appl. Environ. Microbiol. 56: 2764-2770
  24. Merryweather, A. T., U. Weyer, M. P. G. Harris, M. Hirst, T. Booth, and R. D. Possee. 1990. Construction of genetically engineered baculovirus insecticides containing the Bacillus thuringiensis subsp. kurstaki HD-73 delta endotoxin. J. Gen. Virol. 71: 1535-1544 https://doi.org/10.1099/0022-1317-71-7-1535
  25. Rhiel, M., C. M. Mitchell-Logean, and D. W. Murhammer. 1997. Comparison of Trichoplusia ni BTI-Tn-5B1-4 (${High- Five}^{TM}$) and Spodoptera frugiferda Sf-9 insect cell line metabolism in suspension cultures. Biotechnol. Bioeng. 55: 909-920 https://doi.org/10.1002/(SICI)1097-0290(19970920)55:6<909::AID-BIT8>3.0.CO;2-K
  26. Taticek, R. A., C. Choi, S. E. Phan, L. A. Palomares, and M. L. Shuler. 2001. Comparison of growth and recombinant protein expression in two different insect cell lines in attached and suspension culture. Biotechnol. Prog. 17: 676- 684 https://doi.org/10.1021/bp010061g
  27. Wong, K. T. K., C. H. Peter, P. F. Greenfield, S. Reid, and L. K. Nielsen. 1996. Low multiplicity infection of insect cells with a recombinant baculovirus: The cell yield concept. Biotechnol. Bioeng. 49: 659-666