DOI QR코드

DOI QR Code

The Third Critical Angle in Reflection of Elastic Waves in Fiber-reinforced Composites

섬유강화 복합재료 내 탄성파 반사현상의 제3임계각

  • 임현준 (홍익대학교 기계.시스템디자인공학과) ;
  • 백은솔 (홍익대학교 대학원 기계공학과)
  • Published : 2007.02.28

Abstract

As a fundamental approach to studying elastic wave behaviors in fiber-reinforced composites, this paper introduces the analytical method to predict the modes, directions, and amplitudes of all reflected waves that are generated by free-surface reflection in fiber-reinforced composites. The paper also explores a new phenomenon where a reflected wave that is predicted to exist in accordance with the slowness surface may disappear. This may occur when the angle of incidence of a quasi-shear wave exceeds a newly defined critical angle, named the third critical angle. It is hoped that the analytical approach introduced in this paper will provide an easy-to-follow guideline for researchers in the relevant area such as ultrasonic nondestructive testing.

이 논문에서는 섬유강화 복합재료에서의 초음파의 거동에 대해 파동의 모드, 방향, 자유표면에서의 반사파의 반사계수 등을 예측하는 해석적인 방법을 소개한다. 이 논문은 또한 복합재료의 자유표면에서 반사가 일어날 때의 특이한 현상을 새로이 고찰하였는데, 이는 완도면(slowness surface)만을 고려하면 존재할 것으로 예상되지만 실제로는 존재하지 않는 반사파에 대한 것이다. 이는 입사파가 유사횡파일 경우, 입사각이 이 논문에서 새로 정의된 제3임계각을 넘어설 경우 나타나는 현상이다. 본 논문의 내용은 초음파검사와 같은 해당 분야에 종사하는 연구자들에게 유용한 가이드라인을 제시할 것으로 기대된다.

Keywords

References

  1. S. I. Rokhlin, T. K. Bolland, and Laszlo Adler, 'Reflection and refraction of elastic waves on a plane interface between two generally anisotropic media', The Journal of the Acoustical Society of America, Vol. 79, No.4, 1986, pp. 906-918 https://doi.org/10.1121/1.393764
  2. M. S. Gaith and C. Y. Akgoz, 'A new representation for the properties of anisotropic elastic fiber reinforced composite materials', Reviews on Advanced Materials Science, Vol. 10, No. 2, 2005, pp. 138-142
  3. E. R. C. Marques and J. H. Williams, Jr., 'Stress waves in transversely isotropic media', NASA Contract Report 3977, 1986
  4. F. I. Fedorov, Theory of elastic waves in crystals, Plenum Press, New York, 1968
  5. M. J. P. Musgrave, 'Deviation of ray from wave normal for elastic waves in principal planes of crystal symmetry', Journal of the Mechanics and Physics of Solids, Vol. 18, No.3, 1970, pp. 207-211 https://doi.org/10.1016/0022-5096(70)90024-4
  6. E. G. Henneke, 'Reflection-Refraction of a Stress Wave at a Plane Boundary between Anisotropic Media', The Journal of the Acoustical Society of America, Vol. 51, No. 1 (part2), 1972, pp. 210-217 https://doi.org/10.1121/1.1912832
  7. D. A. Prikazchikov and G. A. Rogerson, 'Some comments on the dynamic properties of anisotropic and strongly anisotropic pre-stressed elastic solids', International Journal of Engineering Science, Vol. 41, No.2, 2003, pp. 149-171 https://doi.org/10.1016/S0020-7225(02)00158-1
  8. R. W. Ogden and D. A. Sotiropoulos, 'Refelction of plane waves from the boundary of a pre-stressed compressible elastic half-space', IMA Journal of Applied Mathematics, Vol. 61, No. 1, 1998, pp. 61-90 https://doi.org/10.1093/imamat/61.1.61