DOI QR코드

DOI QR Code

Characterization of a δ-endotoxin produced by Bacillus thuringiensis BT-1, BT-2.

Bacillus thuringiensis BT-1, BT-2가 생산하는 δ-endotoxin의 특성 규명

  • Kim, Young-Min (Department of Biological Sciences, Hannam University) ;
  • Choi, Hong-Seo (Department of Bioscience and Biotechnology, Sejong University) ;
  • Chung, Kun-Sub (Department of Biological Resources and Technology, Yonsei University)
  • 김영민 (한남대학교 생명나노과학대학 생명과학전공) ;
  • 최홍서 (세종대학교 줄기세포 및 암연구실) ;
  • 정건섭 (연세대학교 생물자원공학과)
  • Published : 2007.05.25

Abstract

Bacillus thuringiensis is a well-known species of entomophathogenic bacteria that is widely used as a biopesticide against many insect pests. It produces parasporal crystals ($\delta$-endotoxin) and endospores during sporulation. In this report, the $\delta$-endotoxin produced by Bacillus thuringiensis BT-1 and BT-2 were characterized by Scanning Electron Microscope(SEM), Transmission Electron Microscope(TEM), SDS-PACE, and solubilization activity by alkaline solution. BT-1, BT-2 were cultured in the GBY medium, and the $\delta$-endotoxin of them was purified with discontinuous sucrose density gradient centrifugation. Their $\delta$-endotoxin was observed by SEM and TEM. Morphologically, the $\delta$-endotoxin of BT-1 was a square and flat type, whose size was $1.73{\mu}m{\times}0.7{\mu}m$, and the $\delta$-endotoxin of the BT-2 was spherical form whose size was $1.1{\mu}m{\times}0.9{\mu}m$ determined by SEM and TEM. The $\delta$-endotoxin of the BT-1 was composed of 28 kDa and 21 kDa, however, it of the BT-2 was composed of 50 kDa, 35 kDa, and 22 kDa bands determined by SDS-PACE. The purified crystals of BT-1 and BT-2 were dissolved gradually in alkaline solution as time goes by, and it was perfectly dissolved after 3 hours. It is supposed that the $\delta$-endotoxin of crystal was converted to a state of activation in the course of time in the intestines of insect.

B. thuringiensis는 많은 해로운 곤충들을 박멸시키는데 널리 사용되는 생물학적 살충제로 잘 알려져 있다. 그것은 측포자 형태의 결정체($\delta$-내독소)를 생산하고 내생포자들을 형성한다. 본 논문에서는 B. thuringiensis BT-1과 BT-2에 의해 생산되는 내독소의 특성을 주사전자현미경(SEM), 투과전자현미경(TEM), SDS-PACE, 알칼리 용액에서의 용해 활성을 통하여 규명하였다. BT-1, BT-2 균주는 GBY 배지에서 배양되었고, 두 균주의 내독소는 당밀도구배법을 이용하여 정제되어, 주사전자현미경(SEM), 투과전자현미경(TEM)으로 관찰하였다. 형태학적으로, BT-1의 내독소는 사각형 및 납작형이고 크기는 $1.73{\mu}m{\times}0.7{\mu}m$, 그리고 BT-2 내독소는 구형이며 $1.1{\mu}m$, 폭이 $0.9{\mu}m$인 것으로 밝혀졌다. SDS-PACE 방법으로 분석한 결과, BT-1의 분자량은 28 kDa, 21 kDa, 반면에 BT-2의 분자량은 50 kDa, 35 kDa, 22 kDal으로 밴드가 형성되었다. 이들의 결정체는 알칼리 완충용액 내에서 시간에 지나감에 따라서 점차로 용해되었으며 3시간 후에는 거의 완전하게 용해되었다. 이 결과들을 통하여 BT1과 BT-2 결정체의 내독소가 곤충의 중장 내에서 시간이 흐름에 따라 비활성 상태에서 활성상태로 전환되는 것으로 보여진다.

Keywords

References

  1. Calabrese, D. M. and K. W. Nickerson. 1980. Can. J. Microbioi. 26, 1006-1010 https://doi.org/10.1139/m80-170
  2. Feitelson, J. S., J. Payne and L. Kim. 1992. Bacillus thuringiensis: insects and beyond. Bio/Technology 10, 271-275 https://doi.org/10.1038/nbt0392-271
  3. Inmaculada, G. R., J. Sanchezb, A. Gruppec, A. C. Martinez-Ramirez, C. Rausella, M. D. Real and A. Bravo. 2001. Mode of action of Bacillus thuringiensis PS86Q3 strain in hymenopteran forest pests. Insect Biochem. and Mol. Bio. 31. 839-935 https://doi.org/10.1016/S0965-1748(01)00029-7
  4. Ishwata, S. 1901. On a kind of severe flacheric(sotto diesease). Dninihon. Sanshi Kaiho 114, 1-5
  5. Kim, H. S., D. W. Lee, S. D. Woo, Y. M. Yu and S. K. Kang. 1998. Distribution, Serological Identification, and PCR Analysis of Bacillus thuringiensis. Curr. Microbiol. 37, 195-200 https://doi.org/10.1007/s002849900363
  6. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  7. Lee, H. H., S. H. Hwang and Y. S. Park. 1990. Transfer Insecticidal Toxin Gene in Plants: Cloning of Insecticidal Protein Gene in Bacillus thuringiensis. Kor. J. Appl. Microbiol. Biotech. 6. 647-652
  8. Lee, I. H., Y. H. Je, J. H. Chang, J. Y. Roh, H. W. Oh, S . G. Lee, S. C. Shin and K. S. Boo. 2001. Isolation and Characterization of a Bacillus thuringiensis ssp. kurstaki Strain Toxic to Spodoptera exigua and Culex pipiens. 2001. Curr. Microbiol. 43, 284-287 https://doi.org/10.1007/s002840010302
  9. Lee, J. Y., G. J. Park and H. H. Lee. 1993. Growth and Production of Endotoxin of Bacillus thuringi ensis Isolates. Kor. J. Appl. Microbiol. Biotech. 3. 193-199
  10. Li, M. S., Y. H. Je, I. H. Lee, J. H. Chang, J. Y. Roh, H. S. Kim, H. W. Oh and K. S. Boo. 2002. Isolation and Characterization of a Strain of Bacillus thuringiensis ssp. kurstaki Containing a New delta-Endotoxin Gene. Curr. Microbiol. 45, 299-302 https://doi.org/10.1007/s00284-002-3755-0
  11. Lopez, J. and Ibarra, J. E. 1996. Characterization of a Novel Strain of Bacillus thuringiensis. Appl. Envir. Microbiol. 62, 1306-1310
  12. Nagamatsu, Y., Y. Itai, C. Hatanaka, G. Funatsu and K. Hayashi. 1984. A toxic fragment from the Entomocidal crystal protein of Bacillus thuringiensis. Agric. Biol. Chem. 48(3), 611-619 https://doi.org/10.1271/bbb1961.48.611
  13. Oh, S. S. and H. H. Lee. 1985. Studies on the Isolation of ${\delta}$-Endotoxin and Plasmids in Bacillus thuringiensis, Kor. J. Appl. Microbiol. Biotech. 1. 51-57
  14. Somerville, H. J. 1978. Insect Toxin in Spore and Protein crystal of Bacillus thuringiensis. Trends Biochem. Sci. 3, 108-110 https://doi.org/10.1016/S0968-0004(78)80015-2
  15. Stahly, D. P., D. W. Dingman, L. A. Bulla, Jr. and A. I. Aronson. 1978. Possible Origin and Function of the Parasporal Crystals in Bacillus thuringiensis. Biochem. Biophys. Res. Commun. 84, 581-588 https://doi.org/10.1016/0006-291X(78)90745-3
  16. Tabashink, B. E. 1994. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39, 47-79 https://doi.org/10.1146/annurev.en.39.010194.000403
  17. Wasano, N., Y. A. Chisa, S. Ryoichi, M. Ohba, T. Kawarabata and H. Iwahana. 2000. Spherical Parasporal Inclusions of the Lepidoptera-Specific and Coleoptera-specific Bacillus thuringiensis Strains: A Comparative Electron Microscopic Study. Curr. Microbiol. 40, 128 https://doi.org/10.1007/s002849910025