DOI QR코드

DOI QR Code

Encapsulation of Plasmid DNA in PLGA Nanoparticles: Effects of Poloxamer and Temperature

PLGA 나노파티클의 Plasmid DNA 봉입: 폴록사머와 온도의 영향

  • Published : 2007.02.21

Abstract

Previously, we have reported that PLGA nanoparticles were prepared for sustained release of water-soluble blue dextran and the particle size, in vitro release pattern and encapsulation were modulated by varying polymers. This study was designed to encapsulate plasmid DNA in PLGA nanoparticles and to investigate the effect of Polymers and temperatures. PLGA nanoparticles were fabricated with poloxamer 188 (P188) or poloxamer 407 (P407) by using spontaneous emulsification solvent diffusion method. As a model plasmid DNA, pCMV-Taq2B/1L-18 was encapsulated in PLGA nanoparticles. Then, the particle size, zeta potential and encapsulation efficiency of nanoparticles containing plasmid DNA were investigated. Particle sizes of PLGA nanoparticles prepared with P188 and P407 were in the range of 200-330 nm and 250-290 nm, respectively. Zeta potentials of nanoparticles were negative regardless of nanoparticle compositions. Encapsulation efficiency of P407 nanoparticles prepared at $30^{\circ}C$ was higher than those at other preparation condition. From the results, the PLGA nanoparticles prepared with poloxamers at different temperature, could modulate the particles size of nanoparticles, and encapsulation efficiency of plasmid DNA.

Keywords

References

  1. S. S. Feng, Nanoparticles of biodegradable polymers for new-concept chemotherapy, Expert Rev. Med. Devices, 1, 115-125 (2004) https://doi.org/10.1586/17434440.1.1.115
  2. J. Panyam and V. Labhasetwar, Sustained cytoplasmic delivery of drugs with intracellular receptores using biodegradable nanoparticles, Mol. Pharmaceut., 1, 77-84 (2004) https://doi.org/10.1021/mp034002c
  3. A. Resler; G. W. M. Vandermeulen and H. A. Klok, Advanced drug delivery devices via self-assembly of amphiphilic block copolymers, Adv. Drug Deliv. Rev., 53, 95-108 (2001) https://doi.org/10.1016/S0169-409X(01)00222-8
  4. R. A. Jain, The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glyco1ide) (PLGA). devices, Biomaterials, 21, 2475-2490 (2000) https://doi.org/10.1016/S0142-9612(00)00115-0
  5. S. H. Ryu, S. J. Hwang and J. S. Park, Sustained release of water-soluble blue dextran from PLGA nanoparticles, J. Kor. Pharm. Sci., 36, 109-114 (2006)
  6. D. H. Jones, S. Corris, S. McDonald, J. C. Clegg and G H. Farrar, Poly(DL-lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration, Vaccine, 15, 814817 (1997) https://doi.org/10.1016/S0264-410X(96)00266-6
  7. M. L. Hedley, J. Curley and R. Urban, Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses, Nat. Med., 4, 365-368 (1998) https://doi.org/10.1038/nm0398-365
  8. J. Panyam, W. Z. Zhou, S. Prabha, S. K. Sahoo and V. Labhasetwar, Rapid endo-Iysosomal escape of poly(D,Llactide- co-glycolide) nanoparticles: implications for drug and gene delivery, FASEB J., 16, 1217-1226 (2002) https://doi.org/10.1096/fj.02-0088com
  9. S. Prabha, W. Z. Zhou, J. Panyam and V. Labhasetwar, Size-dependency of nanoparticle-mediatedgene transfection: studies with fractionated nanoparticles, Int. J Pharm., 244, 105-115 (2002) https://doi.org/10.1016/S0378-5173(02)00315-0
  10. S. Prabha and V. Labhasetwar, Critical determinants in PLGA/PLA nanoparticle-mediated gene expression, Pharm. Res., 21, 354-364 (2004) https://doi.org/10.1023/B:PHAM.0000016250.56402.99
  11. P. Lemieux, N. Guerin, G Paradis, R. Proulx, L. Chistyakova, A. Kabanov and V. Alakhov, A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle, Gene Ther., 7, 986-991 (2000) https://doi.org/10.1038/sj.gt.3301189
  12. A. Prokop, E. Kozlov, W. Moore and J.M. Davidson, Maximizing the in vivo efficiency of gene transfer by means of nonviral polymeric gene delivery vehicles, J Pharm. Sci., 91,67-76 (2002) https://doi.org/10.1002/jps.1171
  13. N. Csaba, P. Caamano, A. Sanchez, F. Dominguez and M. J. Alonso, PLGA: poloxamer and PLGA: poloxamine blend nanoparticles: new carriers for gene delivery, Biomacromolecules, 6, 271-278 (2005) https://doi.org/10.1021/bm049577p
  14. Y. Y. Yang, H. H. Chia and T. S. Chung, Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated doubleemulation solvent extraction/evaporation method, J Control. Release, 69, 81-96 (2000) https://doi.org/10.1016/S0168-3659(00)00291-1
  15. P. Alexandridis and T. A. Hatton, Poly(ethylene oxide)poly( propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling, Colloid Surf A-Physicochem. Eng. Asp., 96, 1-46 (1995) https://doi.org/10.1016/0927-7757(94)03028-X
  16. R. C. Mehta, R. Jeyanthi, S. Calis, B. C. Thanoo, K. W. Burton and P. P. DeLuca, Biodegradable microspheres as depot system for parenteral delivery of peptide drug, J. Control. Release, 29, 375-384 (1994)
  17. X. M. Deng, X. H. Li, M. L. Yuan, C. D. Xiong, Z. T. Huang, W. X. Jia and Y. H. Zhang, Optimisation of preparative conditions for poly-DL-lactide-polyethylene glycol microspheres with entrapped Vibrio Cholera, antigens, J. Control. Release, 58, 123-131 (1999) https://doi.org/10.1016/S0168-3659(98)00147-3
  18. P. Narayan, D. Marchant and M. A. Wheatley, Optimization of spray drying by factoial design for production of hollow microspheres for ultrasound imaging, J. Biomed Mater. Res., 56,333-341 (2001) https://doi.org/10.1002/1097-4636(20010905)56:3<333::AID-JBM1101>3.0.CO;2-K
  19. F. Mohamed and C. F. van der Walle, PLGA microcapsules with novel dimpled surfaces for pulmonary delivery of DNA, Int. J Pharm., 311, 97-107 (2006) https://doi.org/10.1016/j.ijpharm.2005.12.016
  20. X. Fu, Q. Ping and Y. Yao, Effect of formulation factors on encapsulation efficiency and release behavior in vitro of huperzine A-PLGA microspheres, J. Microencapsul., 22, 705-714 (2005) https://doi.org/10.1080/02652040500162196