Enantioconvergent Hydrolysis of Racemic Epoxides for Production of Enantiopure Epoxides and Vicinal Diols using Epoxide Hydrolases

에폭사이드 가수분해효소에 의한 광학수렴반응을 이용한 광학활성 에폭사이드 및 Vicinal Diol 제조

  • Lee, Eun-Yeol (Department of Food Science and Biotechnology, Kyungsung University)
  • 이은열 (경성대학교 공과대학 식품생명공학과)
  • Published : 2007.06.30

Abstract

One drawback of conventional kinetic resolution of racemic epoxides by epoxide hydrolase (EH) is that the theoretical yield can never exceed 50%. This 50% limitation can be overcome by using enantioconvergent process, in which both enantiomers of the racemic epoxide are transformed via stereochemically matching pathways into a single enantiopure diol as the sole product in 100% theoretical yield. In order to make a single enantiopure vicinal diol, the two enantiomers of the racemic epoxide must be hydrolyzed with retention and inversion of configuration each other. The EHs should be enantio- and regiospecific at the same time. The enantioconvergent hydrolysis with EHs and relevant biotransformation for preparing enantiopure epoxides and vicinal diols with a high yield are reviewed.

에폭사이드 가수분해 효소를 이용하여 라세믹 에폭사이드 기질로부터 광학활성 에폭사이드 또는 vic-diol을 제조하는 동력학적 분할법은 이론 수율이 50%로 제한된다는 단점이 있다. 이러한 문제점을 해결하기 위하여 이론 수율 100%를 얻을 수 있는 다양한 생물전환 방법들이 최근에 개발되고 있다. 서로 상보적인 입체 및 위치특이성을 가진 에폭사이드 가수분해효소에 의한 광학수렴반응을 이용한 광학활성 vic-diol 제조법, 에폭사이드 가수분해효소가 촉발하는 cascade 반응을 통해 라세믹 haloalkyl 에폭사이드로부터 광학활성 epoxy alcohol 또는 THF를 제조하는 방법, ADH를 이용하여 haloketone을 환원시킨 다음 자발적인 cyclization 반응을 통해 광학활성 에폭사이드를 제조하는 방법들이 개발되었다. 이러한 방법들은 높은 광학순도를 가진 광학활성 물질들을 이론수율 100%로 제조할 수 있으므로 향후에 상업화 사례가 많아질 것으로 기대된다.

Keywords

References

  1. Besse, P. and H. vescharubre (1994), Chemical and biological synthesis of chiral epoxides, Tetrahedron 50, 8885-8927 https://doi.org/10.1016/S0040-4020(01)85362-X
  2. Lee, F. Y. and M. L. Shuler (2007), Molecular engineering of epoxide hydrolase and its application to asymmetric and enantioconvergent hydrolysis, Biotechnol, Bioeng, 95, in press
  3. Orru, R, V. A. and K. Faber (1999), Stereoselecrivities of microbial epoxide hydrolases, Curr. Opin, Chem, Biol, 3, 16-21 https://doi.org/10.1016/S1367-5931(99)80004-0
  4. Kim, H. S., S. J. Lee, and F. Y. Lee (2006), Development and characterization of recombinant whole-cell biocatalysts cxpressing epoxkle hydrolase from Rhodotorula glutinis for enantioselective resolution of racemic epoxides, J. Mol. Catal, B: Enzymatic 43, 2-8 https://doi.org/10.1016/j.molcatb.2006.02.003
  5. Archelus, A. (1998), Fungal epoxide hydrolases: new tools for the synthesis of enantiopure epoxides and diols, J. Mol, Catal, B: Enzymatic 5, 79-85 https://doi.org/10.1016/S1381-1177(98)00011-3
  6. Lee, E. Y., S. S. Yoo, H. S. Kim, S. J. Lee, Y. K. Oh, and S. Park (2004), Production of (S)-styrene oxide by recombinant Pichia pastoris containing epoxide hydrolase from Rhodotorula glutinis, Enzyme Microb. Technol. 35, 624-631 https://doi.org/10.1016/j.enzmictec.2004.08.016
  7. Han, J. H., M. S. Park, J. W. Bae, E. Y. Lee, Y. J. Yoon, S.-G. Lee, and S. Park (2006), Production of (S)-styrene oxide using styrene oxide isomerase negative, mutant of Pseudomonas putida SN1, Enzyme Microb. Technol. 39, 1264-1269 https://doi.org/10.1016/j.enzmictec.2006.03.002
  8. Turner, N. J. (2003), Controlling chirality, Curr. Opin. Biotechnol. 14, 2003, 401-406 https://doi.org/10.1016/S0958-1669(03)00093-4
  9. Strauss, U. T., U. Fclfer, and K. Faber (1999), Blocatalytlc transformation of racemates into chiral building blocks in 100% chemical yield and 100% enantiomerlc excess, Tetrahedron: Asymmetry 10, 107-117 https://doi.org/10.1016/S0957-4166(98)00490-X
  10. Faber, K. and W. Kroutil (2002), Stereoselectivity in blocatalytlc enantioconvergent reactions and a computer program for its determination, Tetrahedron: Asymmetry 13, 377-382 https://doi.org/10.1016/S0957-4166(02)00084-8
  11. Pedragosa-Moreau, S., C. Morisseau, J. Zylber, A. Archelas, J. Baratti, and R. Furstoss (1996), Microbiological transformations. 33 Fungal epoxide hydrolases applied to the synthesis of enantiopure para-substituted styrene oxides. A mechanistic approach, J. Org. Chem. 61, 7402-7407 https://doi.org/10.1021/jo960558i
  12. Manoj, K. M., A. Archelas, J. Barati, and R. Furstoss (2001), Microbiological transtormationa 45. A green chemistry preparative scale, synthesis of enantiopure building blocks of Eliprodil: elaboration of a high substrate concentration epoxide hydrolase-catalyzed hydrolytic kinetic resolution process, Tetrahedron 57, 695-701 https://doi.org/10.1016/S0040-4020(00)01032-2
  13. Genzel, Y., A. Archelas, Q. B. Broxterman, B. Schulze, and R. Furstoss (2002), Microbiological transformations 50: selection of epoxide hydrolases for enzymatic resolution of 2-, 3- or 4-pyridyloxirane, J. Mol. Catal, B: Enzymatic 16, 217-222 https://doi.org/10.1016/S1381-1177(01)00064-9
  14. Rui, L., L. Cao, W. Chen, K. F. Reardon, and T. K. Wood (2005), Protein engineering of epoxide hydrolase from Agrobacterium radiobacter AD1 for enhanced activity and enantioselective production of (R)-1-phenylethane-l,2-diol, Appl. Environ. Microbiol. 71, 3995-4003 https://doi.org/10.1128/AEM.71.7.3995-4003.2005
  15. Cao, L., J. Lee, J. W. Chen, and T. K. Wood (2006), Enantioconvergent production of (R)-l-phenyl-1,2-ethanediol from styrene oxide by combining the Solanum tuberosum. and an evolved Agrobacterium rodiobacter AD1 epoxide hydrolases, Biotechnol. Bioeng. 94, 522-529 https://doi.org/10.1002/bit.20860
  16. Kroutil, W., M. Mischitz, P. Plachota, and K. Faber (1996), Deracemization of ($\pm$)-cis-2,3-epoxyheptane via enantioconvergent biocatalytic hydrolysis using Nocardia EH1-epoxide hydrolase, Tetrahedron Lett. 46, 8379-8382
  17. Steinreiber, A., S. F. Mayer, R. Saf, and K. Faber (2001), Biocatalytic asymmetric and enantioconvergent hydrolysis of trisubstitured oxiranes, Tetrahedron: Asymmetry 12, 1519-1528 https://doi.org/10.1016/S0957-4166(01)00256-7
  18. Bdegger, K., S. F. Mayer, A. Steinreiber, and K. Faber (2004), Chemo-enzymatic enantio-convergent asymmetric synthesis of (R)-(+)-Marmin, Tetrahedron 60, 583-588 https://doi.org/10.1016/j.tet.2003.10.106
  19. Bellucci, G., C. Chiappe, A. Cordoni, and G. Ingrosso (1996), Enantioconvergent transformation of racemic cis-dialkyl substituted epoxides to (R,R) threo diols by microsomal epoxlde hydrolase catalysed hydrolysis, Tetrahedron Lett. 37, 9089-9092 https://doi.org/10.1016/S0040-4039(96)02094-1
  20. Chiappe, C., A. Cordoni, G. L. Moro, and C. D. Palese (1998), Deracemization of ($\pm$)-cis-dialkyl substituted oxides via enantioconvergent hydrolysis catalysed by microsomal epoxide hydrolase, Tetrahedron: Asymmetry 9, 341-350 https://doi.org/10.1016/S0957-4166(97)00630-7
  21. Bellucci, G., C. Chiappe, and A. Cordoni (1996), Enantioconvergent transformation of racemic cis-$\beta$-alkyl substituted styrene oxides to (R.R) threo diols by microsomal epoxide hydrolase catalysed hydrolysis, Tetrahedron: Asymmetry 7, 197-202 https://doi.org/10.1016/0957-4166(95)00436-X
  22. Monterde, M. I., M. Lombard, A. Archelasa, A. Croninb, M. Arandb, and R. Furstoss (2004), Enzymatic transformations. Part 58: Enantioconvergent biohydrolysis of styrene oxide derivatives catalysed by the Solanum tuberosum epoxide hydrolase, Tetrahedron: Asymmetry 15, 2801-2805 https://doi.org/10.1016/j.tetasy.2004.06.032
  23. Mayer, S. F., A. Steinreiber, R. V. A. Orru, and K. Faber (2001), An enzyme-triggered enantio-convergent cascade-reaction, Tetrahedron: Asymmetry 12, 41-43 https://doi.org/10.1016/S0957-4166(01)00010-6
  24. Glueck, S. M., S. F. Mayer, W. Kroutil, and K. Faber (2002), Advances in biocatalytic synthesis. Enzyme-triggered asymmetric cascade reactions, Pure Appl. Chem. 74, 2253-2257 https://doi.org/10.1351/pac200274122253
  25. Poessl, T. M., D. Kosjek, U. Ellmer, C. C. Gruber, K. Edegger, K. Faber, P. Hildebrandt, U. T. Bornscheuer, and W. Kroutil (2005), Non-racemic halohydrlns via biocatalytic hydrogen-reduction reduction of halo-ketones and one-pot cascade reaction to enantiopure epoxides, Adv. Synth. Catal. 347, 1827-1834 https://doi.org/10.1002/adsc.200505094
  26. Orru, R. V. A., S. F. Mayer, W. Kroutil, and K. Faber (1998), Chemoenzymatic deracemization of ($\pm$)-2,2-disubstituted oxiranes, Tetrahedron 54, 859-874 https://doi.org/10.1016/S0040-4020(97)10338-6
  27. Orru, R. V. A., W. Kroutil, and K. Faber (1997), Deracemization of ($\pm$)-2,2-disubstituted epoxldes via enanioconvergent chemoenzymatic hydrolysis using Nocardia EH1 epoxide hydrolase and sulfuric acid, Tetrahedron Lett. 38, 1753-1754 https://doi.org/10.1016/S0040-4039(97)00201-3
  28. Monfort, N., A. Archelas, and R. Furstoss (2004), Enzymatic transformations. Part 55: Highly productive epoxide hydrolase catalyzed resolution of an azole antifungal key synthon, Tetrahedron 60, 601-605 https://doi.org/10.1016/j.tet.2003.10.119