Pluronic F-68이 동결보존된 형질전환 담배세포의 해동 후 세포생장에 미치는 영향

Effect of Pluronic F-68 on the Post-thaw Growth of Cryopreserved Transgenic Nicotiana tabacum Cells

  • 전수환 (인하대학교 공과대학 생물공학과) ;
  • 이경훈 (인하대학교 공과대학 생물공학과) ;
  • 권준영 (인하대학교 공과대학 생물공학과) ;
  • 류현남 (인하대학교 공과대학 생물공학과) ;
  • 김동일 (인하대학교 공과대학 생물공학과)
  • Cheon, Su-Hwan (Department of Biological Engineering, Inha University) ;
  • Lee, Kyoung-Hoon (Department of Biological Engineering, Inha University) ;
  • Kwon, Jun-Young (Department of Biological Engineering, Inha University) ;
  • Ryu, Hyun-Nam (Department of Biological Engineering, Inha University) ;
  • Kim, Dong-Il (Department of Biological Engineering, Inha University)
  • 발행 : 2007.10.30

초록

본 연구에서는 Pluronic F-68을 해동 후 회복배지에 적용하여, 동결보존된 형질전환 식물세포의 생장 증진을 도모하였다. Pluronic F-68은 세포표면의 소수성을 감소시켰을 뿐만 아니라, 세포의 투과성을 증진시켜 세포와 직접 상호 작용할 수 있음을 관찰하였다. 또한 Pluronic F-68의 첨가에 의해 재조합단백질의 발현에 부정적인 영향을 보이지 않음을 확인하였다. 따라서 동결보존시 해동 후 회복배지에 Pluronic F-68의 첨가는 식물세포의 신속하고 효율적인 대량 현탁배양을 가능하게 할 수 있다.

To enhance the growth of cryopreserved cells of transgenic Nicotiana tabacum, Pluronic F-68 was supplemented in a recovery medium during post-thaw period. As cryoprotective agents, 1 M sucrose, 0.5 M glycerol and 0.5 M dimethyl sulfoxide (DMSO) were added before freezing steps. The post-thaw growth of the cells was improved with Pluronic F-68, ranged from 0.1 to 10 g/L. The interactions of Pluronic F-68 with the cells were confirmed by the changes of hydrophobicity or permeability of the cells. Pluronic F-68 did not show any effect on the activity of $\beta$-glucuronidase (GUS) in all treatments. Therefore, the addition of Pluronic F-68 in a recovery medium was found to be beneficial to enhance the post-thaw growth of cryopreserved transgenic tobacco cells without affecting the production of recombinant protein.

키워드

참고문헌

  1. Hellwig, S., J. Drossardk, R. M. Twyman, and R. Fisher (2004), Plant cell cultures for the production of recombinant proteins, Nature Biotechnol. 22, 1415-1422 https://doi.org/10.1038/nbt1027
  2. Ma, J. K. C., P. W. M. Drake, and P. Christou (2003), The production of recombinant pharmaceutical protein in plants, Nature Rev. 4, 794-805 https://doi.org/10.1038/nrg1177
  3. Schmale, K., T. Rademacher, R. Fischer, and S. Hellwig (2006), Towards industrial usefulness, cryo-cell-banking of transgenic BY-2 cell cultures, J. Biotechnol. 124, 302-311 https://doi.org/10.1016/j.jbiotec.2006.01.012
  4. Menges, M. and J. A. H. Murray (2004), Cryopreservation of transformed and wild-type Arabidopsis and tobacco cell suspension cultures, Plant J. 37, 635-644 https://doi.org/10.1046/j.1365-313X.2003.01980.x
  5. Joshi, A. and W. L. Teng (2000), Cryopreservation of Panax ginseng cells, Plant Cell Rep. 19, 971-977 https://doi.org/10.1007/s002990000212
  6. Kuriyama, A., K. Watanabe, S. Ueno, and H. Mitsuda (1989), Inhibitory effect of ammonium ion on recovery of cryopreserved rice cells, Plant Sri. 96, 231-235
  7. Vajta, G. and M. Kuwayama (2006), Improving cryopreservation systems, Theriogenology 65, 236-244 https://doi.org/10.1016/j.theriogenology.2005.09.026
  8. Harding, K. (2004), Genetic integrity of cryopreserved plant cells: a review, Cryoletters 25, 3-22
  9. Murhammer, D. W. and C. F. Goochee (1990), Structural features of nonionic polyglycol polymer molecules responsible for the protective effect in sparged animal cell bioreactor, Biotechnol. Prog. 6, 142-148 https://doi.org/10.1021/bp00002a008
  10. Murhammcr, D. W. and C. F. Goochee (1988), Scaleup of insect cell culture: protective effects of Pluronic F-68, Bio/technology 6, 1411-1418 https://doi.org/10.1038/nbt1288-1411
  11. Palomares, L. A., M. Gonzalez, and O. T. Ramirez (2000), Evidence of Pluronic F-68 direct interaction with insect cells: impact on shear protection, recombinant protein, and baculovirus production, Enzyme Microb. Technol. 26, 324-331 https://doi.org/10.1016/S0141-0229(99)00176-3
  12. Anthony, P., N. B. Jelodar, K. C. Lowe, J. B. Power, and M. R. Davey (1996), Pluronic F-68 increases the post-thaw growth of cryopreserved plant cells, Cryobiology 33, 508-514 https://doi.org/10.1006/cryo.1996.0054
  13. Dewez, J. L., V. Berger, Y. J. Schneider, and P. G. Rouxhet (1997), Influence of substrate hydrophobicity on the adsorption of collagen in the presence of Pluronic F-68, albumin, or calf serum, J. Coli. Interface Sri. 191, 1-10 https://doi.org/10.1006/jcis.1997.4908
  14. Wu, J., Q. Ruan, and H. Y. P. Lam (1997), Effects of surface-active medium additives on insect cell surface hydrophobicity relating to cell protection against bubble damage, Enzyme Microb. Technol. 21, 341-348 https://doi.org/10.1016/S0141-0229(97)00009-4
  15. Bassetti, L. and J. Tramper (1995), Increased anthraquinone production by Morinda citrifolia in a two-phase system with Pluronic F-68. Enzyme Microb. Technol. 17, 353-358 https://doi.org/10.1016/0141-0229(94)00059-X
  16. Lanouar, L., K. C. Lowe, and B. 1 Mulligan (1996), Yeast responses to nonionic smfactants. Enzyme Microb. Technol. 18, 433-438 https://doi.org/10.1016/0141-0229(95)00122-0
  17. Chen, T. H., K. K. Kartha, N. L. Leung, W. G. Kurz, K. B. Chatson, and F. Constabel (1984), Cryopreservation of alkaloid-producing cell cultures of Periwinkle (Catharanthus roseus). Plant Physiol. 75, 726-731 https://doi.org/10.1104/pp.75.3.726
  18. Anthony, P., M. R. Davey, J. B. Power, C. Washington, and K. C. Lowe (1994), Synergistic enhancement of protoplast growth by oxygenated perfluorocarbon and Pluronic F-68, Plant Cell Rep. 13, 251-255