Mass Screening of Lovastatin High-yielding Mutants through Statistical Optimization of Sporulation Medium and Application of Miniaturized Fungal Cell Cultures

Lovastatin 고생산성 변이주의 신속 선별을 위해 통계적 방법을 적용한 Sporulation 배지 개발 및 Miniature 배양 방법 개발

  • Ahn, Hyun-Jung (School of Bioscience and Biotechnology, Kangwon National University) ;
  • Jeong, Yong-Seob (Division of Biotechnology, Chonbuk National University) ;
  • Kim, Pyeung-Hyeun (School of Bioscience and Biotechnology, Kangwon National University) ;
  • Chun, Gie-Taek (Research Center for industrial Development of Biofood Materials)
  • 안현정 (강원대학교 BT특성화학부대학 분자생명과학과, 강원대학교 생명공학연구소) ;
  • 정용섭 (전북대학교 응용생물공학부) ;
  • 김평현 (강원대학교 BT특성화학부대학 분자생명과학과, 강원대학교 생명공학연구소) ;
  • 전계택 (바이오식품 소재개발 및 산업화연구센터)
  • Published : 2007.10.30

Abstract

For large and rapid screening of high-yielding mutants of lovastatin produced by filamentous fungal cells of Aspergillus terreus, one of the most important stage is to test as large amounts of mutated strains as possible. For this purpose, we intended to develop a miniaturized cultivation method using $7m{\ell}$ culture tube instead of traditional $250m{\ell}$ flask (working volume $50m{\ell}$). For obtaining large amounts of conidiospores to be used as inoculums for miniaturized cultures, 4 components i.e., glucose, sucrose, yeast extract and $KH_2PO_4$ were intensively investigated, which had been observed to show positive effect on enhancement of spore production through Plackett-Burman design experimet. When optimum concentrations of these components that were determined through application of response surface method (RSM) based on central composite design (CCD) were used, maximum spore numbers amounting to $1.9\times10^{10}$ spores/plate were obtained, resulting in approximately 190 fold increase as compared to the commonly used PDA sporulation medium. Using the miniaturized cultures, intensive strain development programs were carried out for screening of lovastatin high-yielding as well as highly reproducible mutants. It was observed that, for maximum production of lovastatin, the producers should be activated through 'PaB' adaptation process during the early solid culture stage. In addition, they should be proliferated in condensed filamentous forms in miniaturized growth cultures, so that optimum amounts of highly active cells could be transferred to the production culture-tube as reproducible inoculums. Under these highly controlled fermentation conditions, compact-pelleted morphology of optimum size (less than 1 mm in diameter) was successfully induced in the miniaturized production cultures, which proved essential for maximal utilization of the producers' physiology leading to significantly enhanced production of lovastatin. As a result of continuous screening in the miniaturized cultures, lovastatin production levels of the 81% of the daughter cells derived from the high-yielding producers turned out to be in the range of 80%$\sim$120% of the lovastatin production level of the parallel flask cultures. These results demonstrate that the miniaturized cultivation method developed in this study is efficient high throughput system for large and rapid screening of highly stable and productive strains.

Lovastatin은 근사형성 균류인 Aspergillus terreus가 생합성하는 이차대사산물로 강력한 고지혈증 치료제로 널리 이용되는 물질이다. 본 연구에서는 lovastatin 고생산변이주를 이용하여 포자배지 최적화를 통한 miniature 배양 방법을 확립하고자 하였다. 우선 miniature 배양에 필수적인 효과적인 포자 형성 방법을 개발하고자 포자 형성 배지의 통계학적 배지 최적화를 수행하였다. Miniature 배양의 inoculum으로 이용되는 대량의 포자를 획득하기 위해 Plackett-Burman 실험법을 이용하여 포자 형성을 향상시키는 성분을 조사한 결과, glucose, sucrose, yeast extract 그리고 $KH_2PO_4$가 주목할 만한 효과를 보였다. 상기 성분의 최적 농도를 확인하기 위해 반응표면분석법 (RSM)을 이용한 결과, PDA 포자 형성 배지와 비교하여 볼 때, 최적 성분 농도에서 포자 형성이 약 190배 증가하였다. 최적화된 포자형성 배지를 이용하여 lovastatin 고생산성 변이주의 대량 선별을 위한 miniature 배양 방법을 확립하기 위해 기존의 실험 과정에 'PaB (adaptation)'라는 한 번의 계대배양을 더 추가한 결과 생산균주의 안정성과 재현성이 큰 폭으로 증가하는 주목할 만한 결과를 얻을 수 있었다. 단기간에 가능한 한 다량의 균주를 스크리닝하기 위해 성장배양과 생산배양 모두 조업부피가 7 ml인 tube를 이용해 miniature 배양을 반복 수행하여, lovastatin 생산성과 배양형태가 훌륭한 변이주를 선별할 수 있었는데, 이 균주는 7 ml tube배양과 250 ml flask배양 (조업부피 50 ml) 모두에서 생산성이 높은 것으로 보아 산소 의존도가 비교적 낮고 생산 안정성이 높은 균주인 것으로 판단되었다. 한편 miniature 배양을 이용해서 lovastatin 고생산성을 보이는 균주를 신속 선별하기 위해서는 균주의 적절한 배양형태 유도가 매우 중요한 것으로 관찰되었다. 즉 생산배양으로의 고활성 균주의 접종을 위해서, 또한 생산배양에서 pellet의 배양형태 유도를 위해서 성장배양 시에는 반드시 고농도의 균사모양을, 생산배양 시에는 직경 1 mm 이하의 pellet모양의 배양 형태를 유지해야만, 생산균주가 lovastatin을 안정적으로 고생산할 수 있는 것으로 관찰되었다. 초기에 선별된 균주를 이용하여 miniature 배양에 의해 고속 균주선별 실험을 반복함으로써 고생산성 균주들을 다량 선별할 수 있었는데, 이들의 lovastatin 생산성을 조사한 결과, 기존의 flask 배양대비 오차범위가 $\pm$20% 이내의 생산성을 보이는 균주가 초기 선별시의 32%에 비해 81%로 크게 증가함을 확인할 수 있었다. 이와 같은 결과는 lovastatin 고생산성, 고안정성 균주의 고속 스크리닝을 위해서 본 연구에서 개발한 tube를 이용한 miniature 배양이 기존의 flask 배양을 대체할 수 있는 훌륭한 배양방법임을 제시해 준다.

Keywords

References

  1. Alberts, A. W., J. Chen, G. Kuron, V. Hunt, J. Huff, C. Hoffman, J. Rothrock, M. Lopez, H. Joshua, E Harris, A. Patchett, R. Monaghan, S. Currie, E Stapley, G. Albcrs-Schonbergy, O. Hensens, J. Hirshfield, K. Hoogsteen, J. Liesch, and J. Springer (1980), Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent, Proc. Natl. Acad. Sri. USA. 77, 3957-3961
  2. Christopher Walsh (2003), Antibiotics, pp175-181
  3. Manzoni. M. and M. Rollini (2002), Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs, Appl. Microbiol. Biotechnol. 58(5), 555-564 https://doi.org/10.1007/s00253-002-0932-9
  4. Slater, Eve. E, MacDonald, and S. James (1988), Mechanism of action and biological profile of HMG CoA reductase inhibitors, A new therapeutic alternative, Drugs 36, 72-82 https://doi.org/10.2165/00003495-198800363-00016
  5. Tobert, J. A. (1987), New developments in lipid-lowering therapy: the role of inhibitors of hydroxymethylglutaryl-coenzyme A reductase, J. American heart association 76, 534-538
  6. Kennedy, M. J., S. L. Reader, and R. J.1 Davies (1994), The kinetics of developing fermentation media, Process biochemistry 29, 529-534 https://doi.org/10.1016/0032-9592(94)80014-6
  7. Srinivas, M. R S., N. Chand, and B. K. Lonsane (1994), Use of Plackett-Burman design for rapid screening of several nitrogen sources, growth/product promoters, minerals and enzyme inducers for the production of alpha-galactosidase by Aspergillus niger MRSS 234 in solid state fermentation system, Bioprocess and Biosystems Engineering, 139-144
  8. Xiao, Z. J., P. H. Liu, J. Y. Qin, and P. Xu (2006), Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate, J. Appl. Microbiol. Biotechnol. 74(1), 61-68
  9. Liu, C., Y. Liu, W. Liao, Z. Wen, and S. Chen (2003), Application of statistically-based experimental designs for the optimization of nisin production from whey, Biotechnology Letters 25, 877-882 https://doi.org/10.1023/A:1024009027255
  10. Lua, Wen-Kai., T. Y. Chiub, S. H. Hunga, I. L. Shihc, and Y. N. Changa (2004), Use of Response Surface Methodology to Optimize Culture Medium for Production of Poly-$\gamma$-glutamic Acid by Bacillus licheniformis, Applied Science and Engineering 1, 49-58
  11. Ooijkaas, L. P., E. C. Wilkinson, J. Tramper, and R M. Buitelaar (1999), Medium optimization for spore production of coniothyrium minitans using statistically-based experimental designs, Biotechnol Bioeng, 64(1), 92-100 https://doi.org/10.1002/(SICI)1097-0290(19990705)64:1<92::AID-BIT10>3.0.CO;2-8
  12. Liu, G. Q. and X. L. Wang (2006), Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei, Appl Microbiol Biotechnol. 74(1), 78-83
  13. Prashant M. Bapat, K. Sucharita, and P. W. Pramod (2003), An Optimized Method for Aspergillus niger Spore Production on Natural Carrier Substrates, Biotechnol. Prog. 19, 1683-1688 https://doi.org/10.1021/bp0341141
  14. Stahl, S., R Greasham, and M. Chartrain (2000), Implementation of a rapid microbial screening procedure for biotransformation activities, J. Biosci. Bioeng. 89, 367-371 https://doi.org/10.1016/S1389-1723(00)88960-4
  15. Crueger and Crueger (1990), Strain development, In Biotechnology, 2nd. ed., pp9-58
  16. J. L. Casas L'opez, J. A. S'anchez P'erez, J. M. Fern'andez Sevilla, E. M. Rodriguez Porcel and Y. Chisti (2005), Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus, J. Biotechnol, 116, 61-77 https://doi.org/10.1016/j.jbiotec.2004.10.005
  17. J. C. van Suijdam, N. W. F. Kossen, and P. G. Paul (1980), An Inoculum Technique for the Production of Fungal Pellets, European J. Appl. Microbiol: Biotechnol. 10, 211-221 https://doi.org/10.1007/BF00508608
  18. Manfredini, R, V. Cavallera, L. Marini, and G. Donati (1983), Mixing and oxygen transfer in conventional stirred fermentors, Biotechnology and Bioengineering 25(12), 3115-3131 https://doi.org/10.1002/bit.260251224