Application of Electronic Nose in Biotechnology

바이테크놀로지 분야에서의 전자코 이용

  • Lim, Chae-Lan (Division of Food Science, Seoul Women's University) ;
  • Noh, Bong-Soo (Division of Food Science, Seoul Women's University)
  • 임채란 (서울여자대학교 식품과학부) ;
  • 노봉수 (서울여자대학교 식품과학부)
  • Published : 2007.12.31

Abstract

It's not easy to detect the specific compounds from various compounds that fermented in bioreactor. The electronic nose was an instrument, which comprised of an array of electronic chemical sensors with partial specificity and an appropriate pattern recognition system, capable of recognizing simple or complex volatiles. It can conduct fast analysis and provide simple and straightforward results and is best suited for quality control and process monitoring in field of biotechnology. This review examined the application of electronic nose in biotechnology and brief explanation of its principle. In this minireview numbers of applications of an electronic nose in biotechnology include monitoring fermentation process, to overcome interference with alcohol, and to detect contaminant microorganism were discussed. The electronic nose would be useful for a wide variety of biotechnology when correlating analytical instrumental data with the obtained data from electronic nose.

전자코는 비특정센서를 이용하여 향기성분을 검출하는 분석 장치로 칼럼의 교체나 별도의 전처리과정 없이 사람의 코와 마찬가지로 패턴을 인식하여 신속하게 향기를 분석하거나 이취여부를 판별해 준다. 다변량 통계에 의한 차별성을 토대로 향기성분의 특성간의 차이를 주로 판별할 수도 있고 인공신경망을 통하여 반복된 학습 과정을 통해 미지의 시료의 향기성분과 비교하여 판별할 수도 있다. 전자코는 된장, 치즈, 포도주 등의 발효공정 과정에서 발효 정도를 예측할 수 있으며 또 다른 미생물의 오염 여부를 판단할 수가 있다. 식품산업에서 많이 활용되어 왔던 전자코 시스템의 응용은 바이오테크놀로지의 다양한 분야에도 보다 폭넓게 활용되어지기를 기대하여 본다.

Keywords

References

  1. Kim, J. H., T. J. Kim, D. H. Rhie, and B. S. Noh (1998), Simultaneous determination of glucose, lactate and cholesterol using an oxygen electrode with multiple cathode system, Food Sci. Biotechnol. 7, 28-34
  2. Park, I. S., J. H. Kim, and B. S. Noh (1997), Simultaneous determination of glucose and maltose in Sikhe using oxygen electrode with dual cathode system, Foods Biotechnol. 6, 209-213
  3. Mielle, P. (1996), Electronic nose: Towards the objective instrumental characterization of food aroma, Trends Food Sci. Technol. 7. 432-438 https://doi.org/10.1016/S0924-2244(96)10045-5
  4. Noh, B. S. and S. Y. Oh (2002), Application of electronic nose based on GC with SAW sensor, Food Sci. Ind. 35(3), 50-57
  5. Ampuero, A. and J. O. Bosset (2003), The electronic nose applied dairy products : a review, Sensors Actuators B 94, 1-12 https://doi.org/10.1016/S0925-4005(03)00321-6
  6. Vazquez, M. J., R. A. Lrenzo, and R. Cela (2003), The use of an electronic nose device to monitor the ripening process of anchovies, Int. J. Food Sci. Technol. 38, 273-284 https://doi.org/10.1046/j.1365-2621.2003.00673.x
  7. Noh, B. S. (2005), Analysis of volatile compounds using electronic nose and its application in food industry, Korean J. Food Sci. Technol. 37, 1048-1064
  8. Gendron, K. B., N. G. Hockstein, E. R. Thaler, A. Vachani, and C. W. Hanson (2007), In vitro discrimination of tumor cell lines with an electronic nose, Otolaryngology-Head and Neck Surgery 137, 269-273 https://doi.org/10.1016/j.otohns.2007.02.005
  9. Hodgkin, D. and D. Simmonds (1995), Sensory technology for flavor analysis, Cereal Foods World 40, 186-191
  10. Chou, U. D. (1995), Use and development of sensation sensor, Bulletin Food Technol. 8, 122-131
  11. DiNatale, C., A. Macagnano, R. Paolesse, and A. D`Amico (2001), Artificial olfaction systems: Principles and application to food analysis, Biotechnol. Agrone Soc. Environ. 5(3), 159-165
  12. Lee, D. D. (2003), Technology and application of olfactory sensor system, Control and Instrumentation 2, 20-23
  13. Kil, J. H. (2004), Electronic nose and artificial olfactory sensor, Control and Instrumentation 3, 12-17
  14. Hong, H. K., H. W. Shin, H. S. Park, D. H. Yun, C. H. Kwon, K. C. Lee, S. T. Kim, and T. Morizumi (1996), Gas identification using micro-gas sensor array and neutral-network pattern recognition, Sensors Actuators B 33, 68-71 https://doi.org/10.1016/0925-4005(96)01892-8
  15. Bachinger, T. and C. F. Mandenius (2000), Searching for process information in the aroma of cell cultures, Trends Biotechnol. 18, 494-500 https://doi.org/10.1016/S0167-7799(00)01512-2
  16. Hong, H. K., H. S. Park, D. H. Yun, H. W. Shin, C. H. Kwon, and K. C. Lee (1995), Technical trend of electronic nose system, J. Korean Insti. Electric. Electron. Material Eng. 8, 509-516
  17. Bartlett, P. N., J. M. Elliott, and J. W. Gardner (1997), Electronic nose and their application in the food industry, Food Technol. 51, 44-48
  18. Harper, W. J. (2001), The strengths and weaknesses of the electronic nose, Adv. Experi.l Medical Biol. 488, 59-71
  19. Deisingh, A. K., D. C. Stone, and M. Thompson (2004), Applications of electronic noses and tongues in food analysis, Inter. J. Food Sci. Technol. 39, 587-604 https://doi.org/10.1111/j.1365-2621.2004.00821.x
  20. Staples, E. J. (2000), Real time characterization of food and beverages using an electronic nose with 500 orthogonal sensors and VaporPrintTM imaging. Sensors Expo Convention. Lake Tahoe, CA. USA, May Available from: http://www.znose.com/tech_papers/papers/ GeneralAnalysis/SenExpo2000C.pdf Accessed Aug. 12, 2005
  21. Saevels, S., J. Lammertyn, A. Z. Berna, E. A. Veraverbeke, C. D. Natale, and B. M. Nicolai (2004), An electronic nose and a mass spectrometry-based electronic nose for assessing apple quality during shelf life, Postharvest Biol. Technol. 31, 9-19 https://doi.org/10.1016/S0925-5214(03)00129-7
  22. Noh, B. S., A. R. Youn, and N. Y. Lee (2005), Application of mass spectrometer based electronic nose for discrimination of Angelicae gigantis Radix, Food Sci. Biotechnol. 14, 537-539
  23. DiNatale, C., E. Martinelli, and A. D`Amico (2002), Counteraction of environmental disturbances of electronic nose data by independent component analysis, Sensors Actuators B 82, 158-165 https://doi.org/10.1016/S0925-4005(01)01001-2
  24. Holmberg, M., F. A. M. Davide, C. DiNatale, A. D`Amico, F. Winquist, and I. Lundstrӧm (1997), Drift counteraction in odor recognition applications: lifelong calibration method, Sensors Actuators B 42, 185-194 https://doi.org/10.1016/S0925-4005(97)80335-8
  25. Labreche, S., S. Bazzo, S. Cade, and E. Chanie (2005), Shelf life determination by electronic nose: application to milk, Sensors Actuators 106, 199-206 https://doi.org/10.1016/j.snb.2004.06.027
  26. Pisanelli, A. M., A. A. Qutob, T. Travers, S. Szyszko, and K. C. Persaud (1994), Application of multi array polymer sensors to food industries, Life Chem. Reports 11, 303-308
  27. Panigrahi, S., S. Balasubramanian, H. Gu, C. M. Logue, and M. Marchello (2006), Design and development of a metal oxide based electronic nose for spoilage classification of beef, Sensors Actuators B 119, 2-14 https://doi.org/10.1016/j.snb.2005.03.120
  28. Schaller, E., J. O. Bosset, and F. Escher (1998), Electronic noses and their application to food, Lebensm. Wiss. Technol. 31, 305-316 https://doi.org/10.1006/fstl.1998.0376
  29. Gomez, A. H., J. Wang, G. X. Hu, and A. G. Pereira (2007), Discrimination of storage shelf-life for mandarin by electronic nose technique, Lebensm. Wiss. Technol. 40, 681-689 https://doi.org/10.1016/j.lwt.2006.03.010
  30. Park, J. S. (1992), Characteristics of quality and flavor components of Korean style soybean paste, Ph.D. thesis. Chosun University, Kwangju, Korea
  31. Noh, B. S., Y. M. Yang, T. S. Lee, H. K. Hong, C. H. Kwon, and Y. K. Sung (1998), Prediction of fermentation time of Korean style soybean paste by using the portable electronic nose, Korean J. Food Sci. Technol. 30, 356-362
  32. Chung, H. Y. (2004), Evaluation of light-oxidized off-flavors in reduced fat milk and Cheddar cheese using sensory evaluation and the electronic nose, Ph.D thesis, Michigan State University, East Lansing, MI, USA
  33. Joe, K. D. (1997), Integrated analysis and pattern recognition Swiss cheese aroma by SPME/GC/MS and electronic nose. Graduate School of Food science and Nutrition, Ph. D thesis, Ohio State University, Columbus, OH, USA
  34. Bargon, J., S. Brascho?, J. Florke, U. Herrman, L. Klein, J. W. Loergen, M. Lopez, S. Maric, A. M. Parham, P. Piacenza, H. Schaefgen, C. A. Schalley, G. Silva, M. Schwierz, F. Vogtle, and G. Windscheif (2003), Determination of the ripening state of Emmental cheese via quartz microbalances, Sensors Actuators B 95, 6-19 https://doi.org/10.1016/S0925-4005(03)00395-2
  35. Schaller, E., S. Zenhausern, T. Zesiger, J. O. Bosset, and F. Escher (2000), Use of preconcentration techniques applied to a MS-based 'Electronic nose', Analusis 28, 743-749 https://doi.org/10.1051/analusis:2000145
  36. Bhattacharyya, N., S. Seth, B. Tudu, P. Tamuly, A. Jana, D. Ghosh, R. Bandyopadhyay, and M. Bhuyan (2007), Monitoring of black tea optimum fermentation process using electronic nose, J. Food Eng. 80, 1146-1156 https://doi.org/10.1016/j.jfoodeng.2006.09.006
  37. Bhattacharyya, N., S. Seth, B. Tudu, P. Tamuly, A. Jana, D. Ghosh, R. Bandyopadhyay, M. Bhuyan, and S. Sabhapandit (2007), Detection of optimum fermentation time for black tea manufacturing using electronic nose, Sensors Actuators B 122, 627-634 https://doi.org/10.1016/j.snb.2006.07.013
  38. Bachinger, T., U. Riese, R. Eriksson, and C. F. Mandenius (2000), Monitoring cellular state transitions in a production-scale CHO-cell process using an electronic nose, J. Biotechnol. 76, 61-71 https://doi.org/10.1016/S0168-1656(99)00179-0
  39. Cimander, C., M. Carlsson, and C. F. Mandenius (2002), Sensor fusion on-line monitoring of yoghurt fermentation, J. Biotechnol. 99, 237-248 https://doi.org/10.1016/S0168-1656(02)00213-4
  40. Lozano, J., J. P. Santos, J. Gutierrez, and M. C. Horrillo (2007), Comparative study of sampling systems combined with gas sensors for wine discrimination, Sensors Actuators B 126, 616-623 https://doi.org/10.1016/j.snb.2007.04.018
  41. Pinheiro, C., C. M. Rodrigues, T. Schӓfer, and J. G. Crespo (2002), Monitoring the aroma production during wine-must fermentation with an electronic nose, Biotechnol. Bioeng. 77, 632-640 https://doi.org/10.1002/bit.10141
  42. Liden, H., T. Bachinger, L. Gorton, and C.-F. Mandenius (2000), On-line determination of non-volatile or low-concentration metabolites in a yeast cultivation using an electronic nose, Analyst. 125, 1123-1128 https://doi.org/10.1039/a909585c
  43. Marti, M. P., R. Boque, O. Busto, and J. Guasch (2005), Electronic noses in the quality control of alcoholic beverages, Trends Anal. Chem. 24, 57-66 https://doi.org/10.1016/j.trac.2004.09.006
  44. Cimander, C., T. Bachinger, and C. F. Mandenius (2002), Assessment of the performance of a fed-batch cultivation from the preculture quality using an electronic nose, Biotechnol. Prog. 18, 380-386 https://doi.org/10.1021/bp010166j
  45. Bachinger, T., P. Martensson, and C. -F. Mandenius (1998), On-line estimation of biomass and specific growth rate in a recombinant E. coli batch cultivation using a chemical multisensor array, J. Biotechnol. 60, 55-66 https://doi.org/10.1016/S0168-1656(97)00187-9
  46. Gardner, J. W., M. Craven, C. Dow, and E. Hines (1998), Prediction of bacteria type and culture growth phase by an electronic nose with a multiplane perception networks, Measure. Sci. Technol. 9, 120-127 https://doi.org/10.1088/0957-0233/9/1/016
  47. Arora, K., S. Chand, and B. D. Malhotra (2006), Recent development in bio-molecular electronics techniques for food pathogens, Anal. Chim. Acta 568, 259-274 https://doi.org/10.1016/j.aca.2006.03.078
  48. Magan, N., A. Pavlou, and I. Chrysanthakis (2001), Milk-sence: a volatile sensing system recognise spoilage bacteria and yeasts in milk, Sensors Actuators B 72, 28-34 https://doi.org/10.1016/S0925-4005(00)00621-3
  49. Anonymous. An Investigation of Infection Bacteria With a GC/SAW Electronic Nose. EST Internal Report. Available from: http://www.znose.com/tech_papers/papers/LifeScience/Bacteria.pdf Accessed Aug. 12, 2005
  50. Keshri, G., N. Magan, and P. Voysey (1998), Use of an electronic nose for the early detection and differentiation between spoilage fungi, Lett. Appl. Microbiol. 27, 261-264 https://doi.org/10.1046/j.1472-765X.1998.00438.x
  51. Younts, S. M., E. C. Alocilja, W. N. Osburn, S. Marquie, and D. L. Groom (2002), Differentiation of E. coli O157:H7 from non-O157:H7 E.coli serotypes using a gas sensor-based, computer-controlled detection system, Trans. ASAE 44, 1681-1685
  52. Younts, S. M. (1999), Chapter 2: Development and evaluation of a gas sensor-based instrument for identification E. coli 0157:H7 in a laboratory setting. MS thesis. Michigan State University, East Lansing, Michigan, USA
  53. Dutta, R., E. L. Hines, J. W. Gardner, and P. Boilot (2002), Bacteria classification using Cyranose 320 electronic nose, BioMedical Eng. Online 1:4 Available from: http://www.biomedicalengineering- online.com/content/1/1/4 Accessed Aug. 12, 2005
  54. Canhoto, O. and N. Magan (2003), Potential for the detection of microorganism and heavy metals in portable water using electronic nose technology, Biosens. Bioelectron. 18, 751-754 https://doi.org/10.1016/S0956-5663(03)00019-8
  55. Canhoto, O. and N. Magan (2005), Electronic nose technology for the detection of microbial and chemical contamination of portable water, Sensors Actuators B Chem. 106, 3-6 https://doi.org/10.1016/j.snb.2004.05.029
  56. Du, W. E., C. M. Lin, T. Huang, J. Kim, M. Marshall, and C. I. Wei (2002), Potential application of the electronic nose for quality assessment of salmon fillets under various storage conditions, J. Food Sci. 67, 307-313 https://doi.org/10.1111/j.1365-2621.2002.tb11402.x
  57. Blixt, Y. and E. Borch (1999), Using an electronic nose for determining the spoilage of vacuum-packaged beef, J. Food Microbiol. 46, 123-134 https://doi.org/10.1016/S0168-1605(98)00192-5
  58. Magan, N. and P. Evans (2000), Volatile as an indicator of fungal activity and differentiation between species and the potential use of electronic nose technology for early detection of grain spoilage, J. Stored Products Res. 36, 319-340 https://doi.org/10.1016/S0022-474X(99)00057-0
  59. Olsson, J., T. Borjesson, T. Lundstedt, and J. Schnurer (2000), Volatile for mycological quality grading of barley grains: Determinations using gas chromatography-mass spectrometry and electronic nose, J. Food Microbiol. 59, 167-178 https://doi.org/10.1016/S0168-1605(00)00355-X
  60. Gibson, T. D., O. Prosser, J. N. Hulbert, R. W. Marshall, P. Corcoan, P. Lowery, E. A. Ruck-Keene, and S. Heraon (1997), Detection and simultaneous identification of microorganism from headspace samples using an electronic nose, Sensors Actuators B 44, 413-422 https://doi.org/10.1016/S0925-4005(97)00235-9
  61. McEntegart, C. M., W. R. Penrose, S. Strathmann, and J. R. Stetter (2000), Detection and discrimination of coliform bacteria with gas sensor arrays, Sensors Actuators B 70, 170-176 https://doi.org/10.1016/S0925-4005(00)00561-X
  62. Kim, G., M. W. Lee, K. J. Lee, C. H. Choi, K. M. Noh, S. Kang, and Y. C. Chang (2005), Identification of Salmonella pathogen using electronic nose, J. Biosystems Eng. 30(2), 121-126 https://doi.org/10.5307/JBE.2005.30.2.121
  63. Kim, J. D., H. G. Byun, and Y. K. Ham (2004), Design of a potable electronic nose system using PDA, J. Korean Sensors Soc. 13, 454-461 https://doi.org/10.5369/JSST.2004.13.6.454
  64. Byun, H. G., J. S. Lee, and J. D. Kim (2004), Implementation of a portable electronic nose system for field screening, J. Korean Sensors Soc. 13, 41-46 https://doi.org/10.5369/JSST.2004.13.1.041
  65. Yang, Y. S., Y. S. Kim, S. C. Ha, Y. J. Kim, S. M. Cho, H. B. Pyo, and C. A. Choi (2005), A portable electronic nose (E-Nose) system using PDA device, J. Korean Sensors Soc. 14(2), 69-77 https://doi.org/10.5369/JSST.2005.14.2.069