Enhancement of DNA Microarray Hybridization using Microfluidic Biochip

미세유체 바이오칩을 이용한 DNA 마이크로어레이 Hybridization 향상

  • Lee, H.H. (Department of Chemical Engineering, Myongji University) ;
  • Kim, Y.S. (Department of Nano Science and Engineering, Myongji University)
  • 이현호 (명지대학교 공과대학 화학공학과) ;
  • 김용상 (명지대학교 공과대학 나노공학과)
  • Published : 2007.12.31

Abstract

Recently, microfluidic biochips for DNA microarray are providing a number of advantages such as, reduction in reagent volume, high-throughput parallel sample screening, automation of processing, and reduction in hybridization time. Particularly, the enhancement of target probe hybridization by decrease of hybridization time is an important aspect highlighting the advantage of microfluidic DNA microarray platform. Fundamental issues to overcome extremely slow diffusion-limited hybridization are based on physical, electrical or fluidic dynamical mixing technology. So far, there have been some reports on the enhancement of the hybridization with the microfluidic platforms. In this review, their principle, performance, and outreaching of the technology are overviewed and discussed for the implementation into many bio-applications.

DNA 마이크로어레이는 바이오칩의 발전에서 가장 주목받으며 발전하고 있는 분야로서 이에 대한 연구가 점차 확장하고 있다. DNA나 RNA 등 유전자의 매우 느린 확산속도를 극복하기 위하여 마이크로플루딕 바이오칩이 DNA 마이크로어레이에 적용되는 최근의 학술적인 사례들을 연구, 비교하였다. DNA 마이크로어레이에 적용된 미세유체 바이오칩은 상당수가 효율적인 hybridization을 달성하기 위한 믹싱 시스템이 많이 보고되었으며, 이 총설에서는 그에 대한 분석을 수행하여 유전자 hybridization 강화를 이룬 시스템에 대한 최근 동향을 가늠할 수 있게 하였다. 특별히 PDMS를 이용한 마이크로 펌프의 적용 등, 앞으로의 미세유체 DNA 마이크로어레이 발전가능성과 모델링의 한계점 등을 정리 분석해 보았다.

Keywords

References

  1. Schwarz, M. A. and P. C. Hauser (2001), Recent developments in detection methods for microfabricated analytical devices, Lab Chip 1, 1-6 https://doi.org/10.1039/b103795c
  2. Situma C., M. Hashimoto, and S. A. Soper (2006), Merging microfluidics with microarray-based bioassays, Biomol. Eng. 23, 213-231 https://doi.org/10.1016/j.bioeng.2006.03.002
  3. Edman, C. F., D. E. Raymond, D. J. Wu, E. Tu, R. G. Sosnowski, W. F. Butler, M. Nerenberg, and M. Heller (1997), Electric field directed nucleic acid hybridization on microchips, Nucleic Acids Res. 25(24), 4907-4914 https://doi.org/10.1093/nar/25.24.4907
  4. Bynum, M. A. and G. B. Gordon (2004), Hybridization enhancement using microfluidic planetary centrifugal mixing, Anal. Chem. 76(23), 7039-7044 https://doi.org/10.1021/ac048840+
  5. Vanderhoeven, J, K. Pappaert, B. Dutta, P. V. Hummelen, and G. Desmet (2005), DNA Microarray Enhancement Using a Continuously and Discontinuously Rotating Microchamber, Anal. Chem. 77(14), 4474-4480 https://doi.org/10.1021/ac0502091
  6. Vanderhoeven, J, K. Pappaert, B. Dutta, P. V. Hummelen, and G. Desmet (2005), Comparison of a pump-around, a diffusion-driven and a shear-driven system for the hybridization of mouse lung and testis total RNA on microarrays, Electrophoresis 26, 3773-3779
  7. Chung, Y.-C., Lin, Y.-C., Shiu, M.-Z., Chang, W.-N. T. (2003), Microfluidic chip for fast nucleic acid hybridization, Lab Chip 3 (4), 228-233
  8. Chung, Y.-C., Y.-C. Lin, Y.-L. Hsu, W.-N. T. Chang, and M.-Z. Shiu (2004), The effect of velocity and extensional strain rate on enhancing DNA hybridization, J. Micromech. Microeng. 14(10), 1376-1383 https://doi.org/10.1088/0960-1317/14/10/012
  9. Adey, N. B., M. Lei, M. T. Howard, J. D. Jensen, D. A. Mayo, D. L. Butel, S. C. Coffin, T. C. Moyer, D. E. Slade, M. K. Spute, A. M. Hancock, G. T. Eisenhoffer, B. K. Dalley, and M. R. McNeely (2002), Gains in Sensitivity with a Device that Mixes Microarray Hybridization Solution in a 25-$\mu$m-Thick Chamber, Anal. Chem. 74, 6413-6417 https://doi.org/10.1021/ac026082m
  10. Yuen, P. K., G. Li, Y. Bao, and U. R. Muller (2003), Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays, Lab Chip 3, 46-50 https://doi.org/10.1039/b210274a
  11. Lenigk, R., R. H. Liu, M. Athavale, Z. Chen, D. Ganser, J. Yang, C. Rauch, Y. Liu, B. Chan, H. Yu, M. Ray, R. Marrero, and P. Grodzinski (2002), Plastic biochannel hybridization devices: a new concept for microfluidic DNA arrays, Anal. Biochem. 311(1), 40-49 https://doi.org/10.1016/S0003-2697(02)00391-3
  12. Wei, C. -W., J. -Y. Cheng, C. -T. Huang, M. -H. Yen, and T. -H. Young (2005), Using a microfluidic device for 1 (l DNA microarray hybridization in 500s, Nucleic Acids Res. 33(8), e78 https://doi.org/10.1093/nar/gni078
  13. Liu, R. H., R. Lenigk, R. L. Druyor-Sanchez, J. Yang, and P. Grodzinski (2003), Hybridization Enhancement Using Cavitation Microstreaming, Anal. Chem. 75(8), 1911-1917 https://doi.org/10.1021/ac026267t
  14. Yaralioglu, G. G., I. O. Wygant, T. C. Marentis, and B. T. Khuri-Yakub (2004), Ultrasonic mixing in microfluidic channels using integrated transducers, Anal. Chem. 76(13), 3694-3698 https://doi.org/10.1021/ac035220k
  15. McQuain, M. K., K. Seale, J. Peek, T. S. Fisher, S. Levy, M. A. Stremler, and F. R. Haselton (2004), Chaotic mixer improves microarray hybridization, Anal. Biochem. 325, 215-226 https://doi.org/10.1016/j.ab.2003.10.032
  16. Stroock, A. D., S. K. W. Dertinger, A. Ajdari, I. Mezi, H. A. Stone, and G. M. Whitesides (2002), Chaotic Mixer for Microchannels, Science 295, 647-651 https://doi.org/10.1126/science.1066238
  17. Liu, J., B. A. Williams, R. M. Gwirtz, B. J. Wold, and S. Quake (2006), Enhanced Signals and Fast Nucleic Acid Hybridization By Microfluidic Chaotic Mixing, Angew. Chem. Int. Ed. 45, 3618-3623 https://doi.org/10.1002/anie.200503830
  18. Simonnet C. and A. Groisman (2005), Chaotic Mixing in a Steady Flow in a Microchannel, Phys. Rev. Lett. 94(13), 134501 https://doi.org/10.1103/PhysRevLett.94.134501
  19. Unger, M. A., H. -P. Chou, T. Thorsen, A. Scherer, and S. R. Quake (2000), Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science 288, 113-116 https://doi.org/10.1126/science.288.5463.113
  20. Yoo, J. -C., M. -C. Moon, Y. J. Choi, C. J. Kang, and Y. -S. Kim (2006), A high performance microfluidic system integrated with the micropump and microvalve on the same substrate, Microelec. Eng. 83, 1684-1687 https://doi.org/10.1016/j.mee.2006.01.202
  21. Lee, H. H., J. Smoot, Z. McMurray, D. A. Stahl, and P. Yager (2006), Recirculating Flow Accelerates DNA Microarray Hybridization in A Microfluidic Device, Lab Chip 6, 1163-1170 https://doi.org/10.1039/b605507a
  22. Erickson, D., D. Li, and U. J. Krull (2003), Modeling of DNA hybridization kinetics for spatially resolved biochips, Anal. Biochem. 317, 186-200 https://doi.org/10.1016/S0003-2697(03)00090-3
  23. Dai, H., M. Meyer, S. Stepaniants, M. Ziman, and R. Stoughton (2002), Use of hybridization kinetics for differentiating specific from non-specific binding to oligonucleotide microarrays, Nucleic Acids Res. 30(16), e86 https://doi.org/10.1093/nar/gnf085