References
- Arends, M.J., Morris, R.G., Wyllie, A.H. Apoptosis. The role of the endonuclease. Am. J. Pathol. 136: 593-608, 1990
- Evans, V.G. Multiple pathways to apoptosis. Cell Biol. Int. 17: 461-476, 1993 https://doi.org/10.1006/cbir.1993.1087
- Shi, L., Nishioka, W.K., Th'ng, J., Bradbury, E.M., Litchfield, D.W., Greenberg, A.H. Premature p34cdc2 activation required for apoptosis. Science 263: 1143-1145, 1994 https://doi.org/10.1126/science.8108732
- Chiarugi, V., Magnelli, L., Cinelli, M., Basi, G. Apoptosis and the cell cycle. Cell. Mol. Biol. Res. 40: 603-612, 1994
- El-Deiry, W.S., Harper, J.W., O'Connor, P.M., Velculescu, V.E., Canman, C.E., Jackman, J., Pietenpol, J.A., Burrell, M., Hill, D.E., Wang, Y., Wiman, K.G., Mercer, W.E., Vogelstain, B. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54: 1169-1174, 1994
- 공신, 고금의감, 남창, 강서과학기술출판사, p 99, 1990
- 이천, 원본편주의학입문, 서울, 대성문화사, p 358, 563, 564, 1989
- Lee, Y.T., Choi, B.T., Choi, Y.H., Kang, K.H. Development of health assistances for anti-stress used with Ostreae concha. Kor. J. Ori. Physiol. Pathol. 20: 1604-1611, 2006
- Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K., Elledge, S.J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805-816, 1993 https://doi.org/10.1016/0092-8674(93)90499-G
- Xiong, Y., Hannon, G., Zhang, H., Casso, D., Kobayashi, R., Beach, D. p21 is a universal inhibitor of cyclin kinases. Nature 366: 701-704, 1993 https://doi.org/10.1038/366701a0
- Elledge, S.J., Harper, J.W. Cdk inhibitors: on the threshold of checkpoints and development. Curr. Opin. Cell Biol. 6: 847-852, 1994 https://doi.org/10.1016/0955-0674(94)90055-8
- Miyashita, T., Reed, J.C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293-299, 1995 https://doi.org/10.1016/0092-8674(95)90412-3
- Morgan, D.O. Principles of CDK regulation. Nature 374: 131-134, 1995 https://doi.org/10.1038/374131a0
- Reed, J.C. Bcl-2 family proteins. Oncogene 17: 3225-36, 1998 https://doi.org/10.1038/sj.onc.1202591
- Vegran, F., Boidot, R., Oudin, C., Riedinger, J.M., Lizard Nacol, S. Implication of alternative splice transcripts of caspase-3 and survivin in chemoresistance Bull. Cancer 92: 219-226, 2005
- Kaufmann, S.H., Desnoyers, S., Ottaviano, Y., Davidson, N.E., Poirier, G.G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53: 3976-3985, 1993
- Tewari, M., Quan, L.T., O'Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D.R., Poirier, G.G., Salvesen, G.S., Dixit, V.M. Yama/CPP32, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81: 801-809, 1995 https://doi.org/10.1016/0092-8674(95)90541-3
-
Fukuda, K. Apoptosis-associated cleavage of
$\beta$ -catenin in human colon cancer and rat hepatoma cells. Int. J. Biochem. Cell. Biol. 31: 519-529, 1999 https://doi.org/10.1016/S1357-2725(98)00119-8 -
Steinhusen, U., Badock, V., Bauer, A., Behrens, J., Wittman- Liebold, B., Dorken, B., Bommert, K. Apoptosis-induced cleavage of
$\beta$ -catenin by caspase-3 results in proteolytic fragments with reduced transactivation potential. J. Biol. Chem. 275: 16345-16353, 2000 https://doi.org/10.1074/jbc.M001458200 - Rhee, S.G., Suh, P.G., Ryu, S.H., Lee, S.Y. Studies of inositol phospholipid-specific phospholipase C. Science 244: 546-550, 1989
- Bae, S.S., Perry, D.K., Oh, Y.S., Choi, J.H., Galadari, S.H., Ghayur, T., Ryu, S.H., Hannun, Y.A., Suh, P.G. Proteolytic cleavage of phospholipase C-gamma1 during apoptosis in Molt-4 cells. FASEB J. 14: 1083-1092, 2000 https://doi.org/10.1096/fasebj.14.9.1083
- Widlak, P., Garrard, W.T. Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G. J. Cell. Biochem. 94: 1078-1087, 2005 https://doi.org/10.1002/jcb.20409
- Nagata, S. Apoptotic DNA fragmentation. Exp. Cell Res. 256: 12-18, 2000 https://doi.org/10.1006/excr.2000.4834
- Sheikh, M.S., Huang, Y. Death receptors as targets of cancer therapeutics. Curr. Cancer Drug Targets 4: 97-104, 2004 https://doi.org/10.2174/1568009043481597
- Klas, C., Debatin, K.M., Jonker, R.R., Krammer, P.H. Activation interferes with the APO-1 pathway in mature human T cells. Int. Immunol. 5: 625-630, 1993 https://doi.org/10.1093/intimm/5.6.625
- Osford, S.M., Dallman, C.L., Johnson, P.W., Ganesan, A., Packham, G. Current strategies to target the anti-apoptotic Bcl-2 protein in cancer cells. Curr. Med. Chem. 11: 1031-1039, 2004 https://doi.org/10.2174/0929867043455486
- Rosse, T., Olivier, R., Monney, L., Rager, M., Conus, S., Fellay, I., Jansen, B., Borner, C. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391: 496-499, 1998 https://doi.org/10.1038/35160