Effect of $U_3O_8$-seed on the grain growth of uranium dioxide

$U_3O_8$ 종자가 $UO_2$ 핵연료 소결체의 입자성장에 미치는 영향

  • Rhee, Young-Woo (Advanced LWR Fuel Development Team, Korea Atomic Energy Research Institute) ;
  • Kim, Dong-Joo (Advanced LWR Fuel Development Team, Korea Atomic Energy Research Institute) ;
  • Kim, Keon-Sik (Advanced LWR Fuel Development Team, Korea Atomic Energy Research Institute)
  • 이영우 (한국원자력연구원, 경수로연료개발부) ;
  • 김동주 (한국원자력연구원, 경수로연료개발부) ;
  • 김건식 (한국원자력연구원, 경수로연료개발부)
  • Published : 2007.04.30

Abstract

Densification and grain growth have been investigated in 5 wt% $U_3O_8$ seeded $UO_2$ and compared with those of the common $UO_2$ pellet. $UO_2$ compacts and $U_3O_8$ seeded $UO_2$ compacts were sintered at $1300{\sim}1700^{\circ}C$ for 0 h to 4 h. Density and grain size of the sintered pellets were measured by the water immersion method and the image analyzer, respectively. The seeded pellet has a slightly lower density during the intermediate sintering stage. However, the difference of density between two pellets decreases to about 0.5%TD with increasing the sintering temperature. The grain size of the two pellets is similar until $1600^{\circ}C$ but that of the seeded pellet rapidly increases with increasing the sintering temperature.

[ $UO_2$ ] 소결체와 $U_3O_8$종자를 5wt% 첨가한 $UO_2$ 소결체의 치밀화 과정 및 입자성장 양상을 소결 온도 및 시간을 변수로 하여 분석하였다. $UO_2$ 성형체와 5wt% $U_3O_8$ 종자 첨가 성형체를 수소분위기에서 $1300^{\circ}C$에서 $1700^{\circ}C$로 온도를 올려가며 0시간에서 4시간 소결하여 밀도와 입자크기를 측정하였다. $1300^{\circ}C$까지는 종자 첨가에 상관없이 거의 같은 밀도를 가졌지만 온도가 올라가면서 종자 첨가 소결체의 치밀화가 저하되었다가 $1700^{\circ}C$ 근처에서 거의 비슷한 밀도를 가지게 된다. 입자성장의 경우, $1600^{\circ}C$에서는 종자 입자를 제외하면 기지상의 입자 크기는 거의 비슷하지만 $1700^{\circ}C$ 이후에서는 종자첨가 $UO_2$ 소결체의 입자성장이 종자가 첨가되지 않을 경우에 비하여 2배 이상 빠르게 진행되었다.

Keywords

References

  1. A.H. Booth, 'A method of calculating fission gas diffusion from $UO_{2}$ fuel and its application to the X-2-f loop test', Atomic Energy of Canada Limited, AECL-496 (1957)
  2. J.A. Turnbull, 'The effect of grain size on the swelling and gas release properties of $UO_{2}$ during irradiation', J. Nucl. Mater. 50 (1974) 62 https://doi.org/10.1016/0022-3115(74)90061-0
  3. K.W. Song, S.H. Kim, B.G. Kim,Y.W. Lee, M.S. Yang and H.S. Park, 'Microstructure development during sintering of $Nb_{2}O_{5}$ - doped $UO_{2}$ pellets under $H_{2}$ and $CO_{2}$atmospheres', J. Kor. Nucl. Soc. 26 (1994) 484
  4. I. Amato, R.L. Colombo and A.P. Balzari, 'Grain growth in pure and titania-doped uranium dioxide', J. Nucl. Mater. 18 (1966) 252 https://doi.org/10.1016/0022-3115(66)90166-8
  5. J.B. Ainscough, F. Rigby and S.C. Osborn, 'The effect of titania on grain growth and densification of sintered $UO_{2}$', J. Nucl. Mater. 52 (1974) 191 https://doi.org/10.1016/0022-3115(74)90167-6
  6. H. Matzke, 'On uranium self-diffusion in $UO_{2}$ and $UO_{2+x}$', J. Nucl. Mater. 30 (1969) 26 https://doi.org/10.1016/0022-3115(69)90165-2
  7. H. Assmann, W. Doerr, G. Gradel, G. Maier and M. Peehs, 'Doping $UO_{2}$ with niobia -- Beneficial or not?', J. Nucl. Mater. 98 (1981) 216
  8. J.B. Ainscough, L.F.A. Raven and P.T. Sawbridge, 'Fission gas retentive $UO_{2}$ fuels', pp. 53 in Fabrication of Water Reactor Fuel Elements, lAEA-SM-233/16 (1979)
  9. K.C. Radford and J.M. Pope, '$UO_{2}$ fuel pellet microstructure modification through impurity additions', J. Nucl. Mater. 116 (1983) 305 https://doi.org/10.1016/0022-3115(83)90116-2
  10. K.W Lay, 'Grain growth in $UO_{2}-Al_{2}O_{3}$ in the presence ofa liquid phase', J. Am. Ceram. Soc. 51 (1968) 373
  11. K.W Song, K.S. Kim, K.W Kang and Y.H. Jung, 'Fabrication of large-grained $UO_{2}$ pellets by the addition of $U_{3}O_{8}$ seeds', J. Nucl. Sci. Technol. Supplement 3 (2002) 838
  12. K.W Song, K.S. Kim, K.W Kang and Y.H. Jung, 'Grain size control of $UO_{2}$ pellets by adding heattreated $U_{3}O_{8}$ particles to $UO_{2}$ powder', J. Nucl. Mater. 317 (2003) 204 https://doi.org/10.1016/S0022-3115(03)00080-1
  13. F. Valdivieso, V. Francon, F. Byasson, M. Pijolat, A. Feugier and V. Peres, 'Oxidation behaviour of unirradiated sintered $UO_{2}$ pellets and powder at different oxygen partial pressures, above $350^{\circ}C$', J. Nucl. Mater. 354 (2006) 85 https://doi.org/10.1016/j.jnucmat.2006.02.096
  14. K.W Song, K.S. Kim and Y.H. Jung, 'Densification behavior of $U_{3}O_{8}$ powder compacts by dilatometry', J. Nucl. Mater. 279 (2000) 356 https://doi.org/10.1016/S0022-3115(00)00025-8
  15. J.E. Burke and D. Turnbull, 'Recrystallization and grain growth', Progress in Metal Physics 3 (1952) 220 https://doi.org/10.1016/0502-8205(52)90009-9
  16. W.D. Kingery and B. Francois, 'Grain growth in porous compacts', J. Am. Ceram. Soc. 48 (1965) 546 https://doi.org/10.1111/j.1151-2916.1965.tb14665.x
  17. J.W Cahn, 'The impurity-drag effect in grain boundary motion', Acta Metall. 10 (1962) 789 https://doi.org/10.1016/0001-6160(62)90092-5
  18. S.J.L. Kang and D.N. Yoon, 'Method for analysing the experimental data of ostwald ripening', J. Mater. Sci. Lett. 2 (1983) 291 https://doi.org/10.1007/BF00723258