NOC T8 w2} g

= 2hpE A

Ankur Agarwal* - Mehmet Mustafa** - Ravi Shankar* - A.S. Pandya* - =

[e]
Ogji_***

A Deadlock Free Router Design for Network-on-Chip Architecture

Ankur Agarwal* - Mehmet Mustafa** - Ravi Shankar* - A.S. Pandya* - Young-Ugh Lho***

(o4 oF
- =

©H34 2 7] SoC(MPSoC) 5 1% & SoC 47| ool AL ofe} 7} &
Mo} @919 EdA 28 Qo] F5d Akl Aol
BARES $FYA = A AQ, A5 PARTUEI) S FANA 0 F
16191 SaCE S8 NOC 7] A5 121 A48 - 51tk 1251 711 SoC

WA EA=S 7T Yk B
= o 0-00mm WIS 25 A 222 Gl T2
Vsl LAY o) BAYT S

5 3 golA A0S ks

92 725) A7 /] BA TZETS AFEE Aolth. o] EE-LNOC F2E AT A BANA LALH} A
517 9 AL 2371919 423 m proibitiond 2= -8 wormhole 250l o3} 7 ek, T 574

Mol %, flitwide T4 AEE 2t 29 d 2H9® 728 AN T WAl A A Aol e A Eeo)d AAE e
S A EoA FFHE O 7IsE] 23} v wet
ABSTRACT

Multiprocessor system on chip (MPSoC) platform has set a new innovative trend for the System on Chip (SoC) design. With the rapidly
approaching billion transistors era, some of the main problem in deep sub-micron technologies characterized by gate lengths in the range of
60-90 nm will arise from non scalable wire delays, errors in signal integrity and un-synchronized communication. These problems may be
addressed by the use of Network on Chip (NOC) architecture for future SoC. Most future SoCs will use network architecture and a packet
based communication protocol for on chip communication. This paper presents an adaptive wormhole routing with proactive turn prohibition
to guarantee deadlock free on chip communication for NOC architecture. It shows a simple routing architecture with five full-duplex, flit-wide
communication channels. We provide simulation results for message latency and compare results with those of dimension ordered techniques
operating at the same link rates.

7IY=
Network on Chip, Modeling and Simulation, Quality of Service, System Level Design

I . Introduction approaching and pushing technology at every turn. Moore’s

law predicts that future chips will count more than four

The System Level Design era where creativity,

innovation, ingenuity and inspiration come to the fore, is

billion transistors operating in muiti GHz range[{,2]. It is
expected that the future SoCs will integrate from several

= Dept of Computer Science and Engineering Florida Atlantic University
»« Electrical and Computer Engineering Department, Boston University.
e M2ICYSID HBE DR

HadXb 2007, 1. 17

NOC %8 HA/3H gle 238 AA

dozens to hundreds of cores in a single billion transistor
chip. This is due to the exponential decrease in the transistor
size enabling faster transistor switching times and more
densely integrated circuits. Such computation power has
posed some challenges which include the disparity in
transistor and wire speed and increased power dissipation,
leading to a decrease in the area of the chip which can be
utilized with a single clock cycle[3,4]. Another dominant
factor is to be able to design the system in an acceptable
timeline known as time-to-market. Also, system level
designers are constantly looking for ways to support a set of
demanding Quality of Service (QoS) parameters and
performance metrics, as customers became more savvy.

Technology scaling at the same time has unwanted side
effects which include cross coupling, noise, and transient
errors[5]. This has again led us to reuse of design blocks,
referred as components, which have been carefully designed
by expert designers. However it can never be guaranteed that
those sub-micron effects will not pop-up again while reusing
those components in a design of a sub-system or a system.
Thus it can be concluded that components or the sub-system
which perform as expected might not perform in the same
way after system integration[6]. This has led to a new
domain of research work for system level integration and
verification viz, the NOC architecture|[2,6].

It can be realized from the ITRS graph[7] that the
manufacturing non recurring expense (NRE) of the chip
with RTL design methodology alone would have been
enormous had future improvements not come about. In the
past few decades, it is due to such improvements that teams
of engineers and managers were able to bring the cost of a
product development down to an affordable price for the
customers, while enhancing quality of service and customer
support relative to previous releases. However, if such
innovations and future trends are not brought into the early
stage of the product development cycle, the NRE cost of the
product can increase to an unaffordable amount of one
billion dollars by 2010[7]. Thus it is expected that the future
systems will have increasing roles of design automation,
reusability and componentization, thus increasing the

market share for the electronic design automation (EDA)

Industry. For such scenario, System-level modeling
environment should be developed that essentially supports
the middle-out design philosophy to exploit reuse to the
maximum in order to reduce the design effort{8,9]. The high
volume of reuse should cut down the overall system design
cycle[10,11]. Networks used in current SoCs are based on
both dedicated channels and shared bus approaches. The
buses give the best performance but have the poor
reusability resulting in high time to market On the other
hand, network based communication strategies provide a
reusable, scalable and highly flexible solution to cope with
the current technology trends. Thus, most of the future
systems would have several SoCs that will use network
architecture and a packet based communication protocol for
on chip communication, referred as NOC. In NOC we divide
the system into smaller, locally decoupled synchronous
regions and then composing a local solution. These
synchronous regions would be easier to integrate into a
global solution and verify. At the same time there will be an
asynchronous way in which all the local synchronous
regions will cooperate at the system level; this is referred as
the global solution. Thus these different synchronous
regions need not have a single clock domain to work with.
This approach would reduce the requirement for the clock
tree designers as they need to worry about the local
synchronous regions only which mainly consist of
components and subsystems rather than the system as a
whole. At the same time due to the flexibility to reduce the
clock speed, the amount of power consumption in a system
can be managed better and reduced. In this paper we present
a deadlock free routing protocol for NOC.

IO. Background Work

As emphasized in the Intemnational Technology Roadmap
for Semiconductor (ITRS) 2001 document[7], at system
level, it is very important to separate the computation from
communication aspects to enhance design productivity[14].
From the communication perspective, several researchers
have suggested 2-D mesh architecture for NOC[12,13]

697

RGP RFA G =EA A1 A4z

consisting of resources and network elements. The network
elements are switches, channels and resource-network
interfaces (RNI). The resources for the NOC can be any
general purpose processor core, memory, specified
controller, FPGA, ASIC etc. This infrastructure will be ideal
where QoS and performance parameters can be traded off
based on the user requirements. New algorithms have been
proposed in this domain to reduce the power consumption
while securing cost optimization[15]. It has been a well
established fact that such NOC architectures will be based
on packet switched networks. This has led to new and
efficient design of routers for the NOC architecture[16].
These routers will be responsible for routing the entire traffic
across and have to be interfaced with switches and resources
in the NOC architecture. The design of the RNI should again
be highly scalable and re-usable to be able to be integrated
with different types of resources without the need for change
of the core RNI for different types of resources. Substantial
research has been conducted to propose the right data
formats needed for various layers in the protocol stack. A
reusable switch is used for effectively routing the packet
through the entire NOC; they buffer packets at both input
and output[17].

Because of its simplicity, low channel setup times, high
performance in delivering messages[18], wormhole routing
appears to be uniquely suited for NOC applications. In
wormbhole routed networks, a message, also called a worm,
is sent in flow control digits, called flits. Flits propagate
from node to node in bit parallel fashion, with tight
handshaking between adjacent nodes. This handshake is in
the form of Ready/Acknowledge, R/A, to prevent
overwriting a flit before it has been attended to. The sending
router asserts the Ready line and the receiving router asserts
the Acknowledge line. The input flit buffers being one flit
deep, flits making up a message are therefore in the flit
buffers of the intervening routers along the path between the
source router and the destination router. In contrast to
store-and-forward techniques in which message latency is
linearly dependent on the path length, message latency in
wormhole routed networks is insensitive to distance{19].
However, due to a number of channels being held up while

698

requesting others, wormhole routing is susceptible to
deadlocks. Tum prohibition was first reported in [20],
where turn model was thoroughly investigated for
multi-dimensional meshes, and some turns were prohibited
to prevent all possible deadlocks. Authors considered only
90 degree turns which are sufficient for meshes to prevent
deadlock formation. In [21-24] authors generalized the
notion of a turn, and developed an algorithm to construct
minimal sets of prohibited turns, to break all cycles and
prevent deadlock formation. Authors also established that
the fraction of prohibited turns could be used as one of the
criteria of efficiency of a routing strategy. In [25] authors
extended the use of turn prohibition as described in [21] to
general topologies and applied the Network Calculus
techniques, which, until then, were strictly for feed-forward

routing networks.

M. Turn Prohibition

This section provides a brief and simplified overview of
Turn Prohibition[21]. We assume that the network topology
is represented by an undirected, connected graph G = (V, E)
of N = [V| nodes and M = [E]| edges. A turn is defined as a
three-tuple of nodes (a, b, c), where a,b,c €V, are nodes in the
network in which (a, b), (b,c) € E are edges in G incident on
node b. Turns are symmetric meaning that if turn (a, b, ¢) is
prohibited then the turns (c, b, a) will also be prohibited. If a
node ajhas degree dj then the total number of turns in the

“(d. ¥ d (d -1
graphisgivenbyT(G)=§(21J=]z=.](2])
where the summation is taken over all nodes. We denote by
Z(G) the minimal number of turns breaking all cycles in G
and by Z(G) = Z(G)/T(G) the fraction of prohibited turns.

Bounds on z(G)

Here we present two lower-bounds on the fraction of
prohibited turns in the form of a theorem the proof of which
has been eliminated from this paper but can be found in{21].

Theorem 1. If C={Cl, C2---Cg} is a set of cycles in G

NOC #&& WA H gl= 298 A4

with N nodes and M edges and # the maximal number of
cycles in C containing the same turn, then the fraction of
prohibited turns Z(G) is

z(G)2(M—N+1)/T(G), o
R
2022 @

Bound (1) is general and is not as tight as the bound (2).

For example in a P> P 2-dimensional mesh with N = p
and M =2P(P=1) from bound we have

2
-2
2(6)2 L
p -12p+4. 3

If r = 1, then bound becomes Z(G) 2 R/T(G) where

R is the number of turn disjoint cycles in G . We note that
for large meshes the fraction of prohibited turns approaches
1/6. Upper bounds are based on constructions using the Turn
Prohibition or TP- algorithm. This algorithm can be used in
many cases to construct minimal turn prohibition set of

turns. In its simplest form, TP-algorithm selects a minimum

degree node a with degree 5, , and prohibits all turns (b, a, ¢)
at the selected node. All turns that start with the selected
node a, such as, (a, b, ¢) are permitted. Algorithm then
deletes node @ and all edges incident on it and then applies
the algorithm to the sub-graph G-a. TP-algorithm, not only
maintains the connectivity of the graph, but it also
guarantees that the set of prohibited turns is irreducible and
that the fraction of prohibited turns does not exceed 1/3. The
only family of graphs that this limit is attained is the family
of complete graphs, Kn[25, 26].

Routing table construction is performed based on
all-pairs shortest paths between any two nodes in the
network such that paths do not involve any of the turns from
the set Z(G). Since the topology of the NOC is not likely to
change during computations, we propose to construct the
routing table off-line and download them into the respective

nodes prior to use. Routing table is a 2-dimensional matrix

where each row represents an input port. Head of the
columns are the destination node numbers and a matrix entry
is five bits wide vector, where each bit position is either 1 or

zero. A bit position ¢ implies that the worm coming in from

the corresponding input port can be routed to output port £ .
If there are multiple non-zero entries, that implies that all of
the corresponding output ports are equal distance from the
destination node, and depending on the network state, either
one could be used. In this sense, our routing approach is
minimal and adaptive. For a pXp mesh or torus, the size of
the routing table is only 25p2 bits. In Table I, entries that are
zero imply that no route exists for the destination from the
corresponding input port. For example a message coming in
on port 1 destined for node 1 is not routable. This however
does not imply that messages cannot be delivered. It is an
indication that a message that was meant tobe for node 1
should not be coming in from node 1. It is also interesting to
note that, messages coming in on ports 2 and 3 have
additional restrictions due to the fact that tumn (9, 5, 6) is
forbidden.

Table 1. Routing Table for node 5. Routing vector
for worms coming in from South, input
port 1, for destination node 10 can be
routed adaptively on either port 2 (East)
or port 3 (North), hence the table entry of

12 = < 01100>.
dest. 0| 1 5 10| 11
1p
owp) | 18 | 2 0 12 | 12
1S |16] 0 1 2| 12
2(E) 16 2 1 0 0
3N) | 18 | 2 1 010
aw) | 2 | 2 1 2| 12

Also note that messages coming in from ports 1...4 that
are destined for node 5 are routed toport 0, where the local
processor of node 5 is attached. Referring back to the
prohibited turns for a 2-D Mesh, we note that, from
prohibited turns perspective, widely used dimension ordered
or XY routing algorithm[19] is not symmetrical. Using our
convention for turns, as shown Figure 1, for a core node of

2D Mesh, there are four prohibited turns and eight permitted

699

FHAGA LTS =2 A A1 43

turns. This means that for large meshes, where there are large
numbers of core nodes, the fraction of prohibited turns for

the XY routing algorithm is Zxv (Mpxp)"’l/3’ pP=>%

As was stated earlier, using our approach to turn prohibition

would result in 7 (M,,x,,) =16, P> This implies
that more resources would be available for communication
with deadlock freedom guarantee using the TP approach.

o [T
o [LT =

Fig. 1 Prohibited (a) and permitted (b) tumns in XY
routing algorithm

IV. Router Architecture

In this section we describe the architecture of a simple
router capable of wormhole routing in the 2-D mesh. In
Figure 2, we show the architecture of such a simple
wormhole router. Router is a five port device where each
port has an input and an output flit bus as shown. Incoming
flit buses are each connected to their respective flit buffers.
Flit buffers are the only storage components in the data path
in the router. Each of the five output buses is driven by a
5-to-1 muitiplexer which is further detailed in Figure 3.
When a flit is strobed in with the RDY_IN signal by the
adjacent router, the RDY signal is asserted tothe local router.
Router controller detects the arrival of a flit by the rising
edge of the RDY signal. Since the flit is now available on the
output of the flit buffer, its type can be inspected and the
necessary actions taken by the router controller.
Multiplexers form the switching component in the router.
Under the direction of the router controller, each output port
would be connected to the selected input flit bus. Once an
input has been bound to an output port, the three-bit
selection latch, SL, would hold the selection information
during the entire lifetime of a worm through the router.

700

Selectors
Flit Buffers

West —’D——‘
North —+ L——~ H: i North

East ——JL_.]L E;E_’; East

South -{ }L KLJ! —» South
Local Port —-’ }* =

T
Inputs Router Controller
Router

Interface

wes Multiplexors

Local Port

Outputs

Fig. 2 Wormhole Router Architecture

W
N(3) 3

4

3 M)
EQ) ——n U Fri s
S(1) > 1 X
LP(0) 0

SO
s1 SL
$2
(ol 4

Fig. 3 Flit Bus Multiplexer and Selection Latch

After the tail of a worm, identified by the type field of the
flit, leaves the router and an acknowledgement has been
received from the adjacent router, the input/output binding is
dissolved and the router controller can use the freed up
output channel for another worm. Structure of the flit buffer
and the handshaking logic is depicted in Figure 4.

FLIT Buffer

> RDY

. ACKUIN

NOC 728 @24 e) gl g8 4 A

For example if there are multiple header flits that had
been waiting for an output port which has just been freed up,
the controller inspects all awaiting header flits and
establishes which flit should acquire ownership of the output
port. Based on the arrival time stamps, captured with the
rising edge of the RDY signal, router controller can invoke a
number of selection algorithms to arbitrate among the
waiting header flits. Once the decision is made and the
input-output pair is identified, the appropriate 3-bit selection
value is written into the SL latch of the output causing the flit
and the control signal RDY to propagate to the flit buffer of
the adjacent router on the output port. When the destination
is reached, the flit is taken off and fed to the local processor.
As a flit is taken care of by a router, the latter asserts the
ACK_IN signal back to the adjacent source router. This is
detected by the router controller, which then is interpreted
tomean that next flit could be sent. This tight handshaking
continues until the entire worm is delivered toits destination.
Process of transmitting a worm is initiated by a processor at
the injection channel or port 0. Local processor owns port O
and knows if it is free or busy. Therefore without any
ambiguity initiates the transfer by writing the header flit into
port O flit buffer. This action then is detected by the local
router controller and the sequence of events discussed earlier
takes place to move the flits and the worm across the

network.

V. Wormhole Routing Simulation

We developed simulation models in Opnet and simulated
message delivery in 2-D Meshes. In this section we describe
the simulation models. In Figure 5, we show a typical
16-node Mesh that we simulated using Opnet. As will be
clearer in the following detailed discussions of the model,
Opnet’s finite state machine approach for describing the
behavior of modules, simplified our design considerably.

node_ _| nods 2 node_3

vFig. 5 Mesh Network in Opnet

Structure of a wormhole message is depicted in Figure 6.
A typical unicast message has three header flits, where the
first flit is Destination Address Flit, the second flit is Source
Address Flit and the third flit is the Message Length Hlit.
Header is followed by zero or more data/payload flits. Last
flit in a wormhole message is a tail flit, which contains the
last payload data for the message. We used an 11-bit long
packet with two fields as our packet format simulating one
flit. Three bits wide Type field identifies the type of the flit
and the eight bits wide Data field is the flit payload. As
described below, wormhole handshaking is implemented
using the built-in statwire and remote interrupt mechanisms

in Opnet.

MESSAGE(DAdd(SAdd(MLen{ Data lrau]

FLIT [T2[T1]70] [D7]D6[D5D4[D3[DZD1[Dg
\‘W_J ~—

~ >
Type Data
T2/ T1/ TG Flit Type
0i0jo0 Data Flit
001 Dest Address Flit
0i1]0 Src Address Flit
11110) ge Length Flit
111101 Tail Flit

Fig. 6 Wormhole message and fiit formats and flit
types used in simulation models

5.1 Wormhole Node Model

A wormhole node consists of a router and a processor, the
latter being modeled by two queues; PGQueue for
generation of messages at the source node, and PSQueue, for
consumption of messages at the destination node. Router
module is responsible for forwarding all flits arriving at the

701

IR HFAETI G =2A A 245

input ports to the appropriate output ports. Wormhole
handshaking[19] is implemented using the statwires within
the node, and remote interrupts with adjacent nodes.
Reception of a stream interrupt is interpreted as RDY,
indicating the arrival of a flit. If a flit arrives from the local
injection channel from the PGQueue module, router uses the
statwire to acknowledge the receipt and completion of
handling of the flit. When PGQueue module receives a
statwire event, it retrieves the next flit of the message from
the queue and sends it to the router. When the tail flit arrives
from an adjacent router, a remote interrupt is used to
acknowledge that router is ready for the next flit.

When the Destination Address Flit arrives at a router, it is
stored temporarily in the flit buffer. Reference to the routing
table identifies which output port to use. If the output port is
busy, the header flit is blocked and no acknowledgement is
sent to the sender. When the output port is finally freed up, it
is associated with the waiting header flit. If multiple header
flits are waiting for the same output port that has just been
freed up, selection and binding is done on a FIFO basis.

In this environment, sending a 200 flit long message
would involve sending 200 packets: a very inefficient use of
simulation resources. Because of this we incorporated an
optimization mechanism, in which, source node processor
generates only as many flits as necessary for the Source
Address flit toarrive at its destination. Once the destination
is reached, the destination node, knowing the sending node
address, sends a remote interrupt tothe source node. When
this remote interrupt is received, source node generates a tail
flit, stores it in the queue and schedules a self interrupt.
Scheduling of the self interrupt is based on number of flits
already generated, message length, and the flit transmission
time. When this tail self interrupt arrives, the tail flit is
transmitted to the router from the PGQueue. This
optimization significantly improved the simulation run time
since for each message of 200 flits; only six to seven flits per
message are generated and processed.

5.2 PGQueue Module

In Figure 7 we show the process model of the PGQueue
module of the wormhole node. The forced init state performs

702

the one-time setup necessary at the module, reads in the
values for the run-time attributes, schedules a self interrupt
for generating a message, and transitions into the only
blocking state labeled idle. In the idle state, if
ROUTER_READY event is triggered, it implies that the
local router has just sent an acknowledgement via the
statwire (used for status signals). In this case the PGQueue
process sends either a flit already in the queue, or if
necessary generates one and transmits it tothe router. In our
implementation, we use the stream interrupt as the READY
signal, and the statwire as the ACK signal of the wormhole
handshake. When the DEST_REACHED event fires, it
implies that we just received a remote interrupt from the
destination, and we schedule a tail flit tobe transmitted when
self interrupt expires. When this self interrupt expires, the
TIME_OUT macro is triggered, and the
HANDLE_TIME_OUT is executed. In this function, the tail
flit is transmitted if the interrupt code indicates so.
Otherwise, time-out implies that time for generating another

message has arrived and a new worm is generated.

[ROUTER_READY)/SEND_NEXT_FUT
TN

J—. -
- s \

\
(defaulls,
\
N

™ ; [DEST,EEEERE‘WSE};EDULE_TF
Fig. 7 Process domain description of the generator

5.3 PSQueue Module

As shown in Figure 8, the process model of the PSQueue
of the wormhole node processor is very simple. Again, all of
the one-time, module level processing is done in the forcing
state called init. In the blocking state labeled idle, flits that
arrive from the local router are handled. Arrival of a flit is
triggered by the ARRIVAL event, which causes the
RECEIVE_FLIT exec to run.

NOC 728 &4+ gl 28 4A

~ i

.
[ARRIVAL)/RECEIVE_FLIT

Fig. 8 Sink model of a node

When run, it stores the flit in the receive queue using the
wormhole handshaking with the local router. If the incoming
flit is a Source Address Flit, then a remote interrupt is sent to
the PGQueue of the source node. If the incoming flit is a tail
flit, then end-to-end delay is computed and saved and
message in the PSQueue is discarded. One other activity that
takes place in RECEIVE_FLIT is monitoring the attainment
of network stability. PSQueue process, computes the
cumulative average with every message, and if the stability
criterion is reached the simulation is terminated. Since we
are interested in running many simulations on many
different to pologies, unattended by the user, we opted to
determine the stability condition in this process. We
compute the percent difference between the current and the
previous values for the cumulative running average. If this
difference is less than *0.1%for 300 consecutive
messages, we assume stability is attained and terminate the
simulation. Figure 9 shows the time evolution and
attainment of network stability at low message injection
rates, requiring about 1000 messages.

2.0000%
1.0000% 1
0.0000%
-1.0000%

-2.0000%

Percent Difference

-3.0000%
-4 0000% § - -

-5.0000% +

Worm Count

Fig. 9 Attainment of network stability

5.4 Router Module

Router module process model is depicted in Figure 10,
where we have two blocking states and a forcing state. In Init
state, router identifies its node number from its name, reads
in the run-time attribute values, identifies the attached
PGQueue and PSQueue objects, initializes all state
variables, dynamically allocates memory for routing tables,
and reads in the node specific routing table. It then
transitions tothe Identify blocking state. In this state, each
node identifies its neighbors by sending just a Source Node
Address Flit to each of its active ports. When the router
receives all responses from its active ports, it schedules a self
interrupt with no delay and transitions to the next blocking
state called Listening.

(FLIT_ARRIVAL)/HANDLE_FLIT

(SA_FLITIID_STREAM
P

o \\
‘) IACKIHANDLE_ACK

S
_READYVHANDLE_SWIRE

/
/ p
/" [PSQUEUE

S

(default)

/
[
[TIME_OUTYHANDLE_TIMER

Fig. 10 Process model for the router

In Listening state, FLIT _ARRIVAL is defined to be a
stream interrupt and all flit types are processed by a function
represented by the HANDLE_FLIT macro. This function
calls other procedures that handle individual flit types. For
example, if the flit type is a Destination Node Address flit,
then routing table is referenced to identify the output port
that flit needs to be transmitted out of. If the output port is
busy then process of handling the waiting header flit is
blocked.

When a tail flit is transmitted out on any busy output port,
then list of waiting headers is examined. If there is a header
flit waiting for the output port that has just been freed up,
then the input port that it came from is associated with the,
now free, output port and binding takes place. When the
HANDLE_FLIT macro, identifies that the destination node
address is equal to its own node address, then the local
output port to the PSQueue is bound to the port delivering
the flit. From now on, all incoming flits and the tail flit from

703

R A FHRFA BN =EA ALY AT

the associated input port are sent out to this output port. With
each transmitted flit, router process will send a stat wire to
the PGQueue object and will be awaiting a remote interrupt
from the adjacent router. As discussed earlier, wormhole
handshaking takes place at the router at three interfaces; first
between the two adjacent routers, second between the
PGQueue and the local router, and third between the
PSQueue and the local router. The transition event called
ACK is defined to be a remote interrupt from an adjacent
node. Router process identifies the adjacent node by the
interrupt code and interprets it to mean that remote node is
ready for the next flit. All remote interrupts are processed by
the function defined in the HANDLE_ACK macro.
PSQUEUE_READY transition event is defined to trigger
when a statwire interrupt is received from the PSQueue
module, indicating that it is ready for the next flit. This
interrupt is managed by the function represented by the
HANDLE_SWIRE macro. The TIME_OUT macro is for
debugging purposes and is not used.

VI. Simulation Results

In this section we provide the results of our simulation
experiments for dimension ordered or XY routing,
deterministic Turn Prohibition or TP based routing, and
Adaptive TP or TPA routing. We simulated a 8x8 2D Mesh
using all three techniques and collected average end-to-end
delay statistics for message delivery. We determine the
message latency as the time difference between when the tail
of the message is received by the destination and the
message launch time into the network. Communication
channels were operating at 109Mfps or 1.2Gbps rates. All
messages were 200 flits long and traffic distribution was
uniform. We chose to have the routers with no overhead
during channel setup. Simulations progressed until network
stability was attained and subsequently data were collected.
It can be seen that adaptive TPprovided the best saturation
characteristics. Deterministic TP and XY routing
performance were similar with marginally better saturation
characteristic demonstrated by the TP approach.

704

Average End-to-End Message Latency

3.0E05

25E05

2.0E-05

1.5E-05

1.0E-05

Avg. End-to-End Latency (sec)

50E-06

0.0E+00 ; { ! !
106400 1.0E+01 10E402 10E+03 10Es04 1.0E405 1.0E+06
Message Genaration Rate [worms/(sac.node)

Fig. 11 Experimental results for end-to-end message
delivery in a 64 node 8x8 2D Mesh

VI. Conclusions

In this paper we quantified the deadlock free
communication architecture for NOC. All the links among
the nodes are considered tobe reliable for on chip
communication and are operating at 1.2Gbps. Wormhole
node and router simulation models were developed using
Opnet based tools. We further investigated two competing
algorithms in 2D meshes. We provided simulation results,
which indicate that adaptive TP provided the best saturation
characteristics. XY and deterministic TP approaches
demonstrated similar characteristics with deterministic TP

having marginal advantage over XY routing.

REFERENCES

[1] L. Benini and G. De Micheli. Networks on chip: a new
SOC paradigm, IEEE Computer, Volume 35, No. 1,
January, 2002, 70-78.

[2] Xu, Jiang, W. Wolf, J. Hankel, S. Charkdhar, A
Methodology for design, modeling and analysis for
networks-on-Chip, IEEE International Symposium on
Circuits and Systems, May 2005, 1778-1781

[3] Hemani, Axel Jantsch, Shashi Kumar Adam Postula,
Johnny Oberg, MikaelMillberg, Dan Lindqvist,
Network on Chip: an architecture for billion transistor
era, Proc. of IEEE NorChip Conference, November 2000.

[4] Paul Wielage, Kees Goossens. Network on silicon:

NOC F+&4§ ¢ gl 2-¢8 44

blessing or nightmare? In Euromicro Symposium on
Digital System Design, Dortmund, Genmany,
September 2003. Keynote Speech.

[5] Tejasvi Das, Clyde Washburn, P. R. Mukund, Steve
Howard, Ken Paradis, Jung-Geau Jang, Jan Kolnik,
Effects of technology and dimensional scaling on input
loss prediction of RF MOSFETs, Intemnational
Conference on VLSI Design held jointly with 4th
International Conference on Embedded Systems
Design, 2005, pp. 295-300.

[6] Alexandre M. Amory, Erika Cota, Marcelo
Lubaszewski, Fernando G. Moraes, Reducing test time
with processor reuse in network-on-chip based
systems, Proceedings of the 17th ACM symposium on
Integrated circuits and system design, 2004, pp.
111-116.

[7] Semiconductor Industry Association, The international
Technology Roadmap for Semiconductors. 2001.
http://public.itrs.net/Files/2001ITRS/Home.htm

[8] Edward A. Lee, Yuhing Xiong, System level types for
component-based design, Workshop on Embedded
Software, California, October 2001.

[9] Y.Xiongand E. A. Lee, “An extensible type system for
component-based design”, 6th International Conference
on Tools and Algorithms for the Construction and
Analysis of Systems, Berlin, Germany, April 2000.

[10] Cota, E.; Kreutz, M.; Zeferino, C.A.; Carro, L,;
Lubaszewski, M.; Susin, A., The impact of NoC reuse
on the testing of core-based systems, 21st Proceedings
of VLSI Test Symposium, 2003, April 2003, 128 - 133

[11] A. Jantsch and H. Tenhunen. Networks on Chip
Kluwer Academic Publisher, 2003,

[12] S. Kumar, A. Jantsch, J-P. Soininen, M. Forsell, M.
Millberg, J. Oberg, K. Tiensyrja, and A. Hemani. A
Network on Chip Architecture and Design
Methodology. In IEEE Computer Society Annual
symposium on VLSI, April 2002, 117-124

[13} K. Keutzer, S. Malik, A. Richard Newton, Jan M.
Rabaey, A. Sangiovanni-Vincentelli, System level
design: orthogolanlzation of concems and platform
based design, IEEE Transaction on CAD of Integrated
Circuits and Systems, 19(12): 2000, 1523-1543

[14] P. Pande, C. Grecu, M. Jones, A. Ivanov, R. Saleh,
Performance evaluation and design tradeoffs for

network on chip interconnect architecture, IEEE
Transaction on Computers, vol. 54, Issue 8, August
2005, 1025-1040

[15] D. Rostilav, V. Vishnyakov, E. Friedman, R. Ginosar,
An asynchronous router for multiple service levels
networks on chip, 11th IEEE international symposium
on asynchronous circuits and systems, March 2005,
44-53.

[16] Yi Ran Sun, S. Kumar, A. Jain, Simulation and
evaluation for network on chip architecture using
NS-2, 20th IEEE International Conference preceding
for NorChip vol. 5, May 2003.

[17] F. Silla and J. Duato”High-Performance Routing in
Networks of Workstations with Irregular Topology,”
IEEE Trans. on Parallel and Distributed Systems vol.
11, no. 7, pp. 699-719, 2000.

[18] L.Ni, M. and P. McKinley, K. "A Survey of Wormhole
Routing Techniques in Directed Networks,” Computer
vol. 26, pp. 62-76, 1993.

[19] C. Glass and L. Ni “The Turn Model for Adaptive
Routing,” Journal of ACM vol. 5, pp. 874-902, 1994.

[20] L. Zakrevski “PhD Thesis: Fault-Tolerant Wormhole
Message Routiing in Computer Communication
Networks,” College of Engineering pp. 21-27, 2000.

[21] L. Zakrevski, S. Jaiswal, L. Levitin and M. Karpovsky
"A New Method for Deadlock Elimination in
Computer Networks With Irregular Toplologies,” Pro.
of the IASTED Conf. PDCS-99, vol.1, pp.396-402,
1999.

[22] L. Zakrevski, S. Jaiswaland M. Karpovsky “Unicast
Message Routing in Communication Networks With
Irregular Topologies,” Proc. of CAD-99 1999.

[23] L. Zakrevski, M. Mustafa and M. Karpovsky "Turn
Prohibition Based Routing in Irregular Computer
Networks,” Proc. of the IASTED Intemational
Conference on Parallel and Distributed Computing and
Systems pp. 175-179, 2000.

[24] D. Starobinski, M. Karpovsky and L. Zakrevski
“Application of Network Calculus to General
Topologies Using Turn Prohibition,” IEEE/ACM
Transactions on Networking vol. 11, no. 3, pp.
411-421,2003.

705

FIHFALTA G = EA AL A43

WP
Ankur Agarwal

is an assistant professor at the Computer
Science and Engineering Department,
Florida Atlantic University. He received
{ his MS and PhD. in computer
englneering from FAU. He also holds two
post graduate diplomas in VLSI design and real-time
embedded system design. He has eamned his bachelor of
engineering from Pune University, India in year 2000.
¥ Research Areas : concurrency modeling, system level
design, network-on-chip, real-time-operating system and
VLSI design.

Mehmet Mustafa

is research associate at Electrical and Computer Engineering
department, Boston University. He obtained his MS. degree
in Electrical and Systems Engineering in 1978 and worked
at GTE Laboratories during 26 years. He received his
second MS. degree from Boston University in Computer
Science in 1997 and subsequently the Ph.D degree in 2006,
in Computer Engineering.

Research Areas : network-on-chip, Wormhole Routing,
concurrency modeling, system level design

Rabi Shankar

is a professor at the Computer Science

and Engineering Department, Florida

Atlantic University. He received his

Ph.D. in Computer Science from

University of Wisconsin-Madison.

#Research Areas : Engineering Productivity, Concurrency,
Software Decomposition

706

A. S. Pandya

is a professor at the Computer Science
and Engineering Department, Florida
Atlantic University. He received his
undergraduate education at the Indian
Institute of Technology, Bombay. He
eamed his M.S. and Ph.D. in Computer Science from the
Syracuse University, New York. He has worked as a visiting
Professor in various countries including Japan, Korea, India,
etc.
#Research Areas : VLSI implementable algorithms,
Applications of Al and Image analysis in Medicine,
Financial Forecasting using Neural Networks.

- " =2 (Young-Uhg Lho): A X X}
19853 29
19893 24 HA
19953 2¢ ¥

abej st Bhab
Aboj ki A4}
HA el 3}l HFA}

1989'd ~ 1996\d = A AHFAATA(ETRD A+
1996\d ~ A2 Adigw we

HBAI RO} WA 28, REjElio] A, AR
A2, A A 29, AN G A A, AT S

