DOI QR코드

DOI QR Code

확률적 퍼지 룰 기반 학습에 의한 개인화된 미디어 제어 방법

Personalized Media Control Method using Probabilistic Fuzzy Rule-based Learning

  • 이형욱 (한국과학기술원 전자전산학과) ;
  • 김용휘 (한국과학기술원 전자전산학과) ;
  • 이태엽 (한국과학기술원 전자전산학과) ;
  • 박광현 (한국과학기술원 전자전산학과) ;
  • 김용수 (대전대학교 컴퓨터공학과) ;
  • 조준면 (한국전자통신연구원 지능형로봇연구단) ;
  • 변증남 (한국과학기술원 전자전산학과)
  • 발행 : 2007.04.25

초록

사용자 의도 파악(intention reading) 기술은 스마트 홈과 같은 복잡한 유비쿼터스(ubiquitous) 환경에서 사용자에게 보다 편리하고 개인화된(personalized) 서비스 제공이 가능하도록 해준다. 또한 학습 기능(learning capability)은 지식 발견(knowledge discovery)의 관점에서 의도 파악 기술의 핵심 요소 기술의 하나로 자리 매김하고 있다 이 논문에서는 스마트 홈(smart home) 환경에서 제공 가능한 개인화된 서비스 중의 하나로, 개인화된 미디어 제어 방법에 대한 내용을 다룬다. 특히, 사람의 행동 패턴과 같은 데이터는 패턴 분류의 관점에서 구분해야 할 클래스(class)에 비해 입력 정보가 불충분한 경우가 많아서 비일관적인(inconsistent) 데이터가 많으므로, 퍼지 논리(fuzzy logic)와 확률 (probability)의 개념을 효과적으로 병행해야 의미 있는 지식을 추출해 낼 수 있다. 이를 위하여 반복 퍼지 지도 클러스터링(IFCS; Iterative Fuzzy Clustering with Supervision) 알고리즘에 기반하여 주어진 데이터 패턴으로부터 확률적 퍼지 룰(probabilistic fuzzy rule)을 얻어 내는 방법에 대해 설명한다. 또한 이를 이용한 다양한 학습 제어 구조를 바탕으로 개인화된 미디어 서비스를 추천해 줄 수 있는 방법에 대해서 설명하도록 하고, 실험 결과를 통해 제안된 시스템의 효용성을 보이도록 한다.

Intention reading technique is essential to provide personalized services toward more convenient and human-friendly services in complex ubiquitous environment such as a smart home. If a system has knowledge about an user's intention of his/her behavioral pattern, the system can provide mote qualified and satisfactory services automatically in advance to the user's explicit command. In this sense, learning capability is considered as a key function for the intention reading technique in view of knowledge discovery. In this paper, ore introduce a personalized media control method for a possible application iii a smart home. Note that data pattern such as human behavior contains lots of inconsistent data due to limitation of feature extraction and insufficiently available features, where separable data groups are intermingled with inseparable data groups. To deal with such a data pattern, we introduce an effective engineering approach with the combination of fuzzy logic and probabilistic reasoning. The proposed learning system, which is based on IFCS (Iterative Fuzzy Clustering with Supervision) algorithm, extract probabilistic fuzzy rules effectively from the given numerical training data pattern. Furthermore, an extended architectural design methodology of the learning system incorporating with the IFCS algorithm are introduced. Finally, experimental results of the media contents recommendation system are given to show the effectiveness of the proposed system.

키워드

참고문헌

  1. A. M. Meystel and J. S. Albus, Intelligent Systems: Architecture, Design, and Control, New York: John Wiley & Sons, Inc., 2002
  2. H.A.Simon, 'Why should machine learn?' in Machine Learning, Springer-Verlag, pp.25-38, 1984
  3. Milan Sonika, 'Image Processing, Analysis and Machine Vision', PWS Publishing, pp. 83-87, 1999
  4. Z. Bien, H. Hee, S. Lee, and K. Park, 'Learning Techniques in Service Robotic Environments', Applied Artificial Intelligence: Proc. of 7th International FLINS Conference, Genoa, Italy, 2006
  5. Z. Zenn Bien and Dimitar Stefanov(eds), Advances in Rehabilitation Robotics: Human friendly Techniques on Movement Assistance and Restoration for People with Disability, Springer Verlag, June 2004
  6. Z. Zenn Bien and Hyong-Euk Lee, 'Effective Learning System Techniques for Human-Robot Interaction in Service Environment', Knowledge- Based Systems, accepted, 2007
  7. L. X. Wang and J. M. Mendel, 'Generating Fuzzy Rules by Learning from Examples', IEEE Trans. Systems, Man, and Cybernetics, vol. 22, no.6, pp. 1414-1427, 1992 https://doi.org/10.1109/21.199466
  8. Nefti, S., Oussalah, M., 'Probabilistic fuzzy clustering algorithm', 2004 IEEE International Conference on Systems, Man and Cybernetics, Vol. 5, pp. 4786 - 4791, 10-13 Oct. 2004
  9. Liu. Z. and Li. H. - X, 'Probabilistic fuzzy logic system for modeling and control', IEEE Transactions on Fuzzy Systems, vol. 13, Issue 6, pp. 848-859, Dec. 2005 https://doi.org/10.1109/TFUZZ.2005.859326
  10. Hyong -Euk Lee and Z. Zenn Bien, 'Design of a Probabilistic Fuzzy Rule-based Learning System for Effective Intention Reading in Human-Machine Interaction', Proc. of 3rd International Conference on Ubiquitous Robots and Ambient Intelligence, Korea, Oct, 2006
  11. Hyong-Euk Lee, Kwang-Hvun Park, and Z. Zenn Bien, 'Iterative Fuzzy Clustering Algorithm with Supervision to Construct Probabilistic Fuzzy Rule Base from Numerical Data', IEEE Trans. Fuzzy Systems, accepted, 2007
  12. J C. Bezdek, Pattern Recognition with Fuzzy Objective Algorithms, New York: Plenum, 1981
  13. X. L. Xie and G. Beni, 'Validity Measure for Fuzzy Clustering'. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 13, No.8, pp. 841-847, 1991 https://doi.org/10.1109/34.85677
  14. Hyong-Euk Lee, Yong -Hwi Kim, Kwang-Hyun Park, Yong-Soo Kim, .Iin-Woo jung, joonmyun Cho, MinGyoung Kim and Z. Zenn Bien, 'Fuzzy Inductive Learning System for Learning Preference of the User's Behavior Pattern', Journal of Korea Fuzzy Logic and Intelligent Systems Society, Vol. 15, No.7, pp. 804-812, 2005
  15. A. Baddeley, Working Memory, Oxford Psychology Series, Oxford: Clarendon Press,1986
  16. W. James, Principles of Psychology, New York: Holt, 1890
  17. J.D.E. Gabrieli, 'Cognitive neuroscience of human memory', in Annu. Rev. Psychol., vol.49, pp.87-115, 1998 https://doi.org/10.1146/annurev.psych.49.1.87
  18. Yingxu Wang, Ying Wang, 'Cognitive informatics models of the brain', IEEE Transactions on Systems, Man and Cybernetics, Part C, Vol. 36, Issue 2, pp. 203-207, March 2006 https://doi.org/10.1109/TSMCC.2006.871151
  19. Fred H. Hamker, 'Life-long learning Cell Structures-continuously learning without catastrophic interference', IEEE Trans. Neural Networks, Vol. 14, 2001
  20. S. Grossberg, 'Nonlinear neural networks: principles, mechanisms and architectures', Neural Networks, vol. 1, no. 1, pp. 17-61, 1988