참고문헌
- Aarts, E. and Korst, J. (1989). Simulated Annealing and Boltzmasui Machines. John Wiley & Sons
- Breiman, L. (1995). Better subset regression using the nonnegative garrote. Technometrics, 37, 373-384 https://doi.org/10.2307/1269730
- Cadima, J. and Jolliffe, I. T. (1995). Loadings and correlations in the interpretation of principal components. Journal of Applied Statistics, 22, 203-214 https://doi.org/10.1080/757584614
- Fan, J. and Li, R. (2001). Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. Journal of The American Statistical Association, 96, 1348-1360 https://doi.org/10.1198/016214501753382273
- Hausman, R. E. Jr. (1982). Constrained multivariate analysis. Optimisation in Statistics (Zanckis, S. H. and Rustagi, J. S., eds.), 137-151, North-Holland: Amsterdam
- Jolliffe, I. T. (1972). Discarding variables in a principal component analysis. I: artificial data. Applied Statistics, 21, 160-173 https://doi.org/10.2307/2346488
- Jolliffe, I. T. (1973). Discarding variables in a principal component analysis. ii: real data. Applied Statistics, 22, 21-31 https://doi.org/10.2307/2346300
- Jolliffe, I. T. (1989). Rotation of Ill-defined principal components. Applied Statistics, 38, 139-147 https://doi.org/10.2307/2347688
- Jolliffe, I. T. (1995). Rotation of principal components: choice of normalization constraints. Journal of Applied Statistics, 22, 29-35 https://doi.org/10.1080/757584395
- Jolliffe, I. T., Trendafilov, N. T. and Uddin, M. (2003). A modified principal component technique based on the Lasso. Journal of Computational and Graphical Statistics, 12, 531-547 https://doi.org/10.1198/1061860032148
- Kirkpatrick, S., Gelatt, C. D. Jr. and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671-680 https://doi.org/10.1126/science.220.4598.671
- Li, K. C. (1991). Sliced inverse regression for dimension reduction. Journal of The American Statistical Association, 86, 316-342 https://doi.org/10.2307/2290563
- Li, K. C. (2000). High dimensional data analysis via the SIR/PHD approach. unpublished manuscript
- McCabe, G. P. (1984). Principal variables. Technometrics, 26, 137-144 https://doi.org/10.2307/1268108
- Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Ser. B, 58, 267-288
- Vines, S. K. (2000). Simple principal components. Applied Statistics, 49, 441-451