References
- Abeydeera LR and Day BN. 1997. In vitro penetration of pig oocytes in a modified Tris-buffered medium: effect of BSA, caffeine and calcium. Theriogenology, 48:537-544 https://doi.org/10.1016/S0093-691X(97)00270-7
- Aitken RJ. 1999. The Amoroso Lecture. The human spermatozoon - a cell in crisis? J. Reprod. Fertil., 115: 1-7 https://doi.org/10.1530/jrf.0.1150001
- Bavister BD. 1982. Evidence for a role of post-ovulatory cumulus components in supporting fertilizing ability of hamster spermatozoa. J. Androl., 3:365-372 https://doi.org/10.1002/j.1939-4640.1982.tb00703.x
- Bedford JM and Kim HH. 1993. Cumulus oophorus as a sperm sequestering device, in vivo. J. Exp. Zool., 265:321-328 https://doi.org/10.1002/jez.1402650314
- Chian RC, Niwa K and Sirard MA. 1994. Effects of cumulus cells on male pronuclear formation and subsequent early development of bovine oocytes in vitro. Theriogenology, 41: 1499-1508 https://doi.org/10.1016/0093-691X(94)90201-S
- Fatehi AN, Roelen BA, Colenbrander B, Schoevers EJ, Gadella BM, Bevers MM and van den Hurk R. 2005. Presence of cumulus cells during in vitro fertilization protects the bovine oocyte against oxidative stress and improves first cleavage but does not affect further development. Zygote, 13:177-185 https://doi.org/10.1017/S0967199405003126
- Fraser LR. 1985. Albumin is required to support the acrosome reaction but not capacitation in mouse spermatozoa in vitro. J. Reprod. Fertil., 74:185-196 https://doi.org/10.1530/jrf.0.0740185
- Gil MA, Abeydeera LR, Day BN, Vazquez JM, Roca J and Martinez EA. 2003. Effect of the volume of medium and number of oocytes during in vitro fertilization on embryo development in pigs. Theriogenology, 60:767-776 https://doi.org/10.1016/S0093-691X(03)00051-7
- Gil MA, Ruiz M, Cuello C, Vazquez JM, Roca J and Martinez EA. 2004. Influence of sperm:oocyte ratio during in vitro fertilization of in vitro matured cumulus-intact pig oocytes on fertilization parameters and embryo development. Theriogenology, 61:551-560 https://doi.org/10.1016/S0093-691X(03)00209-7
- Han YJ, Miah AG, Yoshida M, Sasada H, Hamano K, Kohsaka T and Tsujii H. 2006. Effect of relaxin on in vitro fertilization of porcine oocytes. J. Reprod. Dev., 52:657-662 https://doi.org/10.1262/jrd.18038
- Hao Y, Mathialagan N, Walters E, Mao J, Lai L, Becker D, Li W, Critser J and Prather RS. 2006. Osteopontin reduces polyspermy during in vitro fertilization of porcine oocytes. Biol. Reprod., 75:726-733 https://doi.org/10.1095/biolreprod.106.052589
- Hong JY, Yong HY, Lee BC, Hwang WS, Lim JM and Lee ES. 2004. Effects of amino acids on maturation, fertilization and embryo development of pig follicular oocytes in two IVM media. Theriogenology, 62:1473-1482 https://doi.org/10.1016/j.theriogenology.2004.02.013
- Kikuchi K, Nagai T, Motilik J, Shiuoya Y and Izaike Y. 1993. Effect of follicle cells on in vitro fertilization of pig follicular oocytes. Theriogenology, 39:593-599 https://doi.org/10.1016/0093-691X(93)90246-2
- Lavy G, Boyers SP and De Cherney AH. 1988. Hyaluronidase removal of the cumulus oophorus increases in vitro fertilization. J. In. Vitr. Fertil. Embryol. Trans., 5:257-260 https://doi.org/10.1007/BF01132173
- Li YH, Ma W, Li M, Hou Y, Jiao LH and Wang WH. 2003. Reduced polyspermic penetration in porcine oocytes inseminated in a new in vitro fertilization (IVF) system: straw IVF. Biol. Reprod., 69:1580-1585 https://doi.org/10.1095/biolreprod.103.018937
- Mahi-Brown CA and Yanagimachi R. 1983. Parameters influencing ovum pickup by the oviductal fimbria in the golden hamster. Gamete Res., 8:1-10 https://doi.org/10.1002/mrd.1120080102
- Motta PM, Nottola SA, Pereda J, Croxatto HB and Familiari G. 1995. Ultrastructure of human cumulus oophorus: a transmission electron microscope study on oviductal oocytes and fertilized egg. Hum. Reprod., 10:2361-2367 https://doi.org/10.1093/oxfordjournals.humrep.a136299
- Nakai M, Kashiwazaki N, Takizawa A, Maedomari N, Ozawa M, Noguchi J, Kaneko H, Shino M and Kikuchi K. 2006. Morphologic changes in boar sperm nuclei with reduced disulfide bonds in electrostimulated porcine oocytes. Reproduction, 131:603-611 https://doi.org/10.1530/rep.1.01001
- Neill JD. 2006. Knobil and Neill's Physiology of Reproduction. 3rd ed., Elsevier, Amsterdam, pp. 65-67
- Park YE, Hong JY, Yong HY, Lim JM and Lee ES. 2005. Effect of exogenous energy substrates in a serum-free culture medium on the development of in vitro matured and fertilized porcine embryos. Zygote, 13: 269-275 https://doi.org/10.1017/S0967199405003369
- Petters RM and Wells KD. 1993. Culture of pig embryos. J. Reprod. Fertil. Suppl., 48:61-73
- Pursel VG and Johnson LA. 1975. Freezing of boar spermatozoa: fertilizing capacity with concentrated semen and new thawing procedure. J. Anim. Sci., 40:99-102 https://doi.org/10.2527/jas1975.40199x
- Richter L, Romeny E, Weitze KF and Zimmermann F. 1975. Deep freezing of boar semen. VII. Communication: Laboratory and Field expenments using extender Hlilsenberg VIII. Dt. Tierarztl. Wschr., 82:155-162
- Salustri A, Yanagishita M and Hascall V. 1989. Synthesis and accumulation of hyaluronic acid and proteoglycans in the mouse cumulus cell oocyte complex during follicle-stimulating hormone-induced mucification. J. Biol. Chem., 264: 13840-13847
- Staigmiller RB and Moor RM. 1984. Effect of follicle cells on the maturation and developmental competence of ovine oocytes matured outside the follicle. Gamete Res., 9:221-229 https://doi.org/10.1002/mrd.1120090211
- Suzuki M, Misumi K, Ozawa M, Noguchi J, Kaneko H, Ohnuma K, Fuchimoto D, Onishi A, Iwamoto M, Saito N, Nagai T and Kikuchi K. 2006. Successful piglet production by IVF of oocytes matured in vitro using NCSU-37 supplemented with fetal bovine serum. Theriogenology, 65:374-386 https://doi.org/10.1016/j.theriogenology.2005.05.039
- Suzuki C, Yoshioka K, Itoh S, Kawarasaki T and Kikuchi K. 2005. In vitro fertilization and subsequent development of porcine oocytes using cryopreserved and liquid-stored spermatozoa from various boars. Theriogenology, 64:1287-1296 https://doi.org/10.1016/j.theriogenology.2005.03.009
- Tanghe S, Van Soom A, Nauwynck H, Coryn M and De Kruif A. 2002. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation and fertilization. Mol. Reprod. Dev., 61:414-424 https://doi.org/10.1002/mrd.10102
- Tesarik J, Mendoza Oltras C and Testart J. 1990. Effect of the human cumulus oophorus on movement characteristics of human capacitated spermatozoa. J. Reprod. Fertil., 88:665-675 https://doi.org/10.1530/jrf.0.0880665
- Tatemoto H, Sakurai N and Muto N. 2000. Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: Role of cumulus cells. Biol. Reprod., 63:805-810 https://doi.org/10.1095/biolreprod63.3.805
- Vanderhyden BC and Armstrong DT. 1989. Role of cumulus cells and serum on the in vitro maturation, fertilization, and subsequent development of rat oocytes. Biol. Reprod., 40: 720-728 https://doi.org/10.1095/biolreprod40.4.720
- Wang WH, Abeydeera LR, Okuda K and Niwa K. 1994. Penetration of porcine oocytes during maturation in vitro by cryopreserved ejaculated spermatozoa. Biol. Reprod., 50:510-515 https://doi.org/10.1095/biolreprod50.3.510
- Wongsrikeao P, Kaneshige Y, Ooki R, Taniguchi M, Agung B, Nii M and Otoi T. 2005. Effect of the removal of cumulus cells on the nuclear maturation, fertilization and development of porcine oocytes. Reprod. Dom. Anim., 40:166-170 https://doi.org/10.1111/j.1439-0531.2005.00576.x
- Yamauchi N and Nagai T. 1999. Male pronuclear formation in denuded porcine oocytes after in vitro maturation in the presence of cysteamine. Biol. Reprod., 61:828-833 https://doi.org/10.1095/biolreprod61.3.828
- Yoon KW, Shin TY, Park JI, Roh S, Lim JM, Lee BC, Hwang WS and Lee ES. 2000. Development of porcine oocytes from preovulatory follicles of different sizes after maturation in media supplemented with follicular fluids. Reprod. Fertil. Dev., 12:133-139 https://doi.org/10.1071/RD00027
- Zhang L, Jiang S, Wozniak PJ, Yang X and Godke RA. 1995. Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro. Mol. Reprod. Dev., 40:338-344 https://doi.org/10.1002/mrd.1080400310