Theoretical Optical Waveguide Investigation of Self-Organized Polymer Thin Film Nanostructures with Nanoparticle Incorporation

  • Lau, King Hang Aaron (Max-Planck-Institute for Polymer Research) ;
  • Knoll, Wolfgang (Max-Planck-Institute for Polymer Research) ;
  • Kim, Dong-Ha (Max-Planck-Institute for Polymer Research, Division of Nano Sciences & Department of Chemistry, Ewha Womans University)
  • Published : 2007.04.30

Abstract

Hybrid thin film nanostructures composed of metal nanoparticles (NPs) and self-assembled polymer films with different spatial distributions of NPs were analyzed by optical waveguide spectroscopy (OWS). Specifically, the dielectric constants were calculated using effective medium theory for the incorporation of 1 vol% Au NP into the block copolymer (BCP) films having a cylindrical nanodomain morphology. Three cases were considered: uniform distribution of NPs in the film; selective distribution of NPs only in the cylindrical domains; and segregation of NPs to the center of the cylindrical domains. The optical waveguide spectra derived from the calculated dielectric constants demonstrate the feasibility of experimentally distinguishing the composite nanostructures with different inner morphologies in the hybrid metal NP-BCP nanostructures, by the measurement of the dielectric constants using OWS.

Keywords

References

  1. I. W. Hamley, The physics of Block Copolymers, Oxford University Press, New York, 1998
  2. G. H. Fredrickson and F. S. Bates, Annu. Rev. Mater. Sci., 26, 501 (1996)
  3. M. Lazzari and M. A. López-Quintela, Adv. Mater., 15, 1583 (2003)
  4. I. W. Hamley, Angew. Chem. Int. Ed., 42, 1692 (2003)
  5. A. M. Urbas, M. Maldovan, P. DeRege, and E. L. Thomas, Adv. Mater., 14, 1850 (2002)
  6. S.-H. Nam, J.-W. Kang, and J.-J. Kim, Macromol. Res., 14, 114 (2006) https://doi.org/10.1007/BF03219077
  7. K. B. Yoon, Macromol. Res., 12, 290 (2004)
  8. M. A. van Dijk and R. van den Berg, Macromolecules, 28, 6773 (1995)
  9. Y. Wang, R. Song, Y. S. Li, and J. S. Shen, Surf. Sci., 530, 136 (2003)
  10. Z. Sun, D. H. Kim, M. Wolkenhauer, G.-G. Bumbu, W. Knoll, and J. S. Gutmann, Chem. Phys. Chem., 7, 370 (2006)
  11. D. H. Kim, K. H. A. Lau, W. Joo, J. Peng, U. Jeong, C. J. Hawker, J. K. Kim, T. P. Russell, and W. Knoll, J. Phys. Chem. B, 110, 15381 (2006)
  12. D. H. Kim, K. H. A. Lau, J. W. F. Robertson, O.-J. Lee, U. Jeong, J. I. Lee, C. J. Hawker, T. P. Russell, J. K. Kim, and W. Knoll, Adv. Mater., 17, 2442 (2005)
  13. D. E. Aspnes, Thin Solid Films, 89, 249 (1982)
  14. C. G. Granqvist and O. Hunderi, Phys. Rev. B, 18, 2897 (1978)
  15. S. Eustis and M. A. El-Sayed, Chem. Soc. Rev., 35, 209 (2006) https://doi.org/10.1039/b514191e
  16. M. E. Franke, T. J. Koplin, and U. Simon, Small, 2, 36 (2006) https://doi.org/10.1002/smll.200690003
  17. D. H. Kim, X. Jia, Z. Lin, K. Guarini, and T. P. Russell, Adv. Mater., 16, 702 (2004)
  18. J. F. Berret, N. Schonbeck, F. Gazeau, D. El Kharrat, O. Sandre, A. Vacher, and M. Airiau, J. Am. Chem. Soc., 128, 1755 (2006) https://doi.org/10.1021/ja054700l
  19. X. Li, P. Göring, E. Pippel, M. Steinhart, D. H. Kim, and W. Knoll, Macromol. Rapid Comm., 26, 1173 (2005)
  20. S. Horiuchi, T. Fujita, T. Hayakawa, and Y. Nakao, Langmuir, 19, 2963 (2003)
  21. C. G. Granqvist and O. Hunderi, Phys. Rev. B, 16, 3513 (1977)
  22. U. Jeong, D. Y. Ryu, D. H. Kho, J. K. Kim, J. T. Goldbach, D. H. Kim, and T. P. Russell, Adv. Mater., 16, 533 (2004)
  23. W. Knoll, Annu. Rev. Phys. Chem., 49, 569 (1998) https://doi.org/10.1146/annurev.physchem.49.1.569
  24. G. L. Hornyak, C. J. Patrissi, and C. R. Martin, J. Phys. Chem. B, 101, 1548 (1997)
  25. J. C. Maxwell-Garnett, Philos. Trans. R. Soc. London, 203, 385 (1904)
  26. J. C. Maxwell-Garnett, Philos. Trans. R. Soc. London, 205, 237 (1906)
  27. F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, Phys. Rev. Lett., 78, 4289 (1997)
  28. D. A. G. Bruggeman, Ann. Phys. (Leipzig), 24, 636 (1935)
  29. L. G. Schulz, J. Opt. Soc. Am., 44, 357 (1954)
  30. L. G. Schulz and F. R. Tangherlini, J. Opt. Soc. Am., 44, 362 (1954)
  31. M. Maldovan, M. R. Bockstaller, E. L. Thomas, and W. C. Carter, Appl. Phys. B, 76, 877 (2003)
  32. O. J. F. Martin and N. B. Piller, Phys. Rev. E, 58, 3909 (1998)